全文获取类型
收费全文 | 41788篇 |
免费 | 586篇 |
国内免费 | 354篇 |
专业分类
测绘学 | 1287篇 |
大气科学 | 3053篇 |
地球物理 | 8494篇 |
地质学 | 13781篇 |
海洋学 | 3607篇 |
天文学 | 10230篇 |
综合类 | 114篇 |
自然地理 | 2162篇 |
出版年
2021年 | 328篇 |
2020年 | 362篇 |
2019年 | 448篇 |
2018年 | 972篇 |
2017年 | 898篇 |
2016年 | 1172篇 |
2015年 | 662篇 |
2014年 | 1112篇 |
2013年 | 2010篇 |
2012年 | 1218篇 |
2011年 | 1610篇 |
2010年 | 1468篇 |
2009年 | 2024篇 |
2008年 | 1780篇 |
2007年 | 1802篇 |
2006年 | 1690篇 |
2005年 | 1271篇 |
2004年 | 1297篇 |
2003年 | 1184篇 |
2002年 | 1225篇 |
2001年 | 1086篇 |
2000年 | 1016篇 |
1999年 | 893篇 |
1998年 | 884篇 |
1997年 | 888篇 |
1996年 | 711篇 |
1995年 | 666篇 |
1994年 | 625篇 |
1993年 | 543篇 |
1992年 | 475篇 |
1991年 | 486篇 |
1990年 | 466篇 |
1989年 | 485篇 |
1988年 | 434篇 |
1987年 | 503篇 |
1986年 | 456篇 |
1985年 | 535篇 |
1984年 | 658篇 |
1983年 | 568篇 |
1982年 | 557篇 |
1981年 | 505篇 |
1980年 | 440篇 |
1979年 | 432篇 |
1978年 | 445篇 |
1977年 | 381篇 |
1976年 | 341篇 |
1975年 | 349篇 |
1974年 | 324篇 |
1973年 | 362篇 |
1972年 | 260篇 |
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
991.
We model the thermal evolution of a subsurface ocean of aqueous ammonium sulfate inside Titan using a parameterized convection scheme. The cooling and crystallization of such an ocean depends on its heat flux balance, and is governed by the pressure-dependent melting temperatures at the top and bottom of the ocean. Using recent observations and previous experimental data, we present a nominal model which predicts the thickness of the ocean throughout the evolution of Titan; after 4.5 Ga we expect an aqueous ammonium sulfate ocean 56 km thick, overlain by a thick (176 km) heterogeneous crust of methane clathrate, ice I and ammonium sulfate. Underplating of the crust by ice I will give rise to compositional diapirs that are capable of rising through the crust and providing a mechanism for cryovolcanism at the surface. We have conducted a parameter space survey to account for possible variations in the nominal model, and find that for a wide range of plausible conditions, an ocean of aqueous ammonium sulfate can survive to the present day, which is consistent with the recent observations of Titan's spin state from Cassini radar data [Lorenz, R.D., Stiles, B.W., Kirk, R.L., Allison, M.D., del Marmo, P.P., Iess, L., Lunine, J.I., Ostro, S.J., Hensley, S., 2008. Science 319, 1649-1651]. 相似文献
992.
The dynamics of Titan's stratosphere is discussed in this study, based on a comparison between observations by the CIRS instrument on board the Cassini spacecraft, and results of the 2-dimensional circulation model developed at the Institute Pierre-Simon Laplace, available at http://www.lmd.jussieu.fr/titanDbase [Rannou, P., Lebonnois, S., Hourdin, F., Luz, D., 2005. Adv. Space Res. 36, 2194-2198]. The comparison aims at both evaluating the model's capabilities and interpreting the observations concerning: (1) dynamical and thermal structure using temperature retrievals from Cassini/CIRS and the vertical profile of zonal wind at the Huygens landing site obtained by Huygens/DWE; and (2) vertical and latitudinal profiles of stratospheric gases deduced from Cassini/CIRS data. The modeled thermal structure is similar to that inferred from observations (Cassini/CIRS and Earth-based observations). However, the upper stratosphere (above 0.05 mbar) is systematically too hot in the 2D-CM, and therefore the stratopause region is not well represented. This bias may be related to the haze structure and to misrepresented radiative effects in this region, such as the cooling effect of hydrogen cyanide (HCN). The 2D-CM produces a strong atmospheric superrotation, with zonal winds reaching 200 m s−1 at high winter latitudes between 200 and 300 km altitude (0.1-1 mbar). The modeled zonal winds are in good agreement with retrieved wind fields from occultation observations, Cassini/CIRS and Huygens/DWE. Changes to the thermal structure are coupled to changes in the meridional circulation and polar vortex extension, and therefore affect chemical distributions, especially in winter polar regions. When a higher altitude haze production source is used, the resulting modeled meridional circulation is weaker and the vertical and horizontal mixing due to the polar vortex is less extended in latitude. There is an overall good agreement between modeled chemical distributions and observations in equatorial regions. The difference in observed vertical gradients of C2H2 and HCN may be an indicator of the relative strength of circulation and chemical loss of HCN. The negative vertical gradient of ethylene in the low stratosphere at 15° S, cannot be modeled with simple 1-dimensional models, where a strong photochemical sink in the middle stratosphere would be necessary. It is explained here by dynamical advection from the winter pole towards the equator in the low stratosphere and by the fact that ethylene does not condense. Near the winter pole (80° N), some compounds (C4H2, C3H4) exhibit an (interior) minimum in the observed abundance vertical profiles, whereas 2D-CM profiles are well mixed all along the atmospheric column. This minimum can be a diagnostic of the strength of the meridional circulation, and of the spatial extension of the winter polar vortex where strong descending motions are present. In the summer hemisphere, observed stratospheric abundances are uniform in latitude, whereas the model maintains a residual enrichment over the summer pole from the spring cell due to a secondary meridional overturning between 1 and 50 mbar, at latitudes south of 40-50° S. The strength, as well as spatial and temporal extensions of this structure are a difficulty, that may be linked to possible misrepresentation of horizontally mixing processes, due to the restricted 2-dimensional nature of the model. This restriction should also be kept in mind as a possible source of other discrepancies. 相似文献
993.
P. Pravec A.W. Harris B.D. Warner K. Hornoch D. Higgins A. Galád Š. Gajdoš J. Világi Yu.N. Krugly V. Chiorny W.R. Cooney Jr. D. Terrell R.D. Stephens V. Reddy F. Colas R. Durkee R.A. Koff 《Icarus》2008,197(2):497-504
The spin rate distribution of main belt/Mars crossing (MB/MC) asteroids with diameters 3-15 km is uniform in the range from f=1 to 9.5 d−1, and there is an excess of slow rotators with f<1 d−1. The observed distribution appears to be controlled by the Yarkovsky-O'Keefe-Radzievskii-Paddack (YORP) effect. The magnitude of the excess of slow rotators is related to the residence time of slowed down asteroids in the excess and the rate of spin rate change outside the excess. We estimated a median YORP spin rate change of ≈0.022 d−1/Myr for asteroids in our sample (i.e., a median time in which the spin rate changes by 1 d−1 is ≈45 Myr), thus the residence time of slowed down asteroids in the excess is ≈110 Myr. The spin rate distribution of near-Earth asteroids (NEAs) with sizes in the range 0.2-3 km (∼5 times smaller in median diameter than the MB/MC asteroids sample) shows a similar excess of slow rotators, but there is also a concentration of NEAs at fast spin rates with f=9-10 d−1. The concentration at fast spin rates is correlated with a narrower distribution of spin rates of primaries of binary systems among NEAs; the difference may be due to the apparently more evolved population of binaries among MB/MC asteroids. 相似文献
994.
The new one-dimensional radiative-convective/photochemical/microphysical model described in Part I is applied to the study of Titan's atmospheric processes that lead to haze formation. Our model generates the haze structure from the gaseous species photochemistry. Model results are presented for the species vertical concentration profiles, haze formation and its radiative properties, vertical temperature/density profiles and geometric albedo. These are validated against Cassini/Huygens observations and other ground-based and space-borne measurements. The model reproduces well most of the latest measurements from the Cassini/Huygens instruments for the chemical composition of Titan's atmosphere and the vertical profiles of the observed species. For the haze production we have included pathways that are based on pure hydrocarbons, pure nitriles and hydrocarbon/nitrile copolymers. From these, the nitrile and copolymer pathways provide the stronger contribution, in agreement with the results from the ACP instrument, which support the incorporation of nitrogen in the pyrolized haze structures. Our haze model reveals a new second major peak in the vertical profile of haze production rate between 500 and 900 km. This peak is produced by the copolymer family used and has important ramifications for the vertical atmospheric temperature profile and geometric albedo. In particular, the existence of this second peak determines the vertical profile of haze extinction. Our model results have been compared with the DISR retrieved haze extinction profiles and are found to be in very good agreement. We have also incorporated in our model heterogeneous chemistry on the haze particles that converts atomic hydrogen to molecular hydrogen. The resultant H2 profile is closer to the INMS measurements, while the vertical profile of the diacetylene formed is found to be closer to that of the CIRS profile when this heterogenous chemistry is included. 相似文献
995.
E. Kallio T.L. Zhang R. Jarvinen P. Janhunen J.-A. Sauvaud J.-J. Thocaven H. Andersson K. Brinkfeldt M. Holmström M. Yamauchi W. Baumjohann A.J. Coates D.O. Kataria K.C. Hsieh M. Grande T. Säles P. Riihelä N. Krupp J.G. Luhmann S. Orsini A. Mura M. Maggi P. Brandt K. Szego R.A. Frahm J.R. Sharber P. Bochsler 《Planetary and Space Science》2008,56(6):796-801
Plasma and magnetic field measurements made onboard the Venus Express on June 1, 2006, are analyzed and compared with predictions of a global model. It is shown that in the orbit studied, the plasma and magnetic field observations obtained near the North Pole under solar minimum conditions were qualitatively and, in many cases also, quantitatively in agreement with the general picture obtained using a global numerical quasi-neutral hybrid model of the solar wind interaction (HYB-Venus). In instances where the orbit of Venus Express crossed a boundary referred to as the magnetic pileup boundary (MPB), field line tracing supports the suggestion that the MPB separates the region that is magnetically connected to the fluctuating magnetosheath field from a region that is magnetically connected to the induced magnetotail lobes. 相似文献
996.
J. Pétri 《Astrophysics and Space Science》2008,318(3-4):181-186
In this paper we extend the idea suggested previously by Pétri (Astron. Astrophys. 439:L27, 2005a; 443:777, 2005b) (papers I and II) that the high frequency quasi-periodic oscillations (HF-QPOs) observed in low-mass X-ray binaries (LMXBs) may be explained as a resonant oscillation of the accretion disk with a rotating asymmetric background (gravitational or magnetic) field imposed by the compact object. Here, we apply this general idea to black hole binaries. It is assumed that a test particle experiences a similar parametric resonance mechanism such as the one described in paper I and II but now the resonance is induced by the interaction between a spiral density wave in the accretion disk, excited close to the innermost stable circular orbit, and vertical epicyclic oscillations. We use the Kerr spacetime geometry to deduce the characteristic frequencies of this test particle. The response of the test particle is maximal when the frequency ratio of the two strongest resonances is equal to 3:2 as observed in black hole candidates. Finally, applying our model to the microquasar GRS 1915+105, we reproduce the correct value of several HF-QPOs. Indeed the presence of the 168/113/56/42/28 Hz features in the power spectrum time analysis is predicted. Moreover, based only on the two HF-QPO frequencies, our model is able to constrain the mass M BH and angular momentum a BH of the accreting black hole. We show the relation between M BH and a BH for several black hole binaries. For instance, assuming a black hole weakly or mildly rotating, i.e. a BH≤0.5?G? M BH/c 2, we find that for GRS 1915+105 its mass satisfies 13?M ⊙≤M BH≤20?M ⊙. The same model applied to two other well-known BHCs gives for GRO J1655-40 a mass 5?M ⊙≤M BH≤7?M ⊙ and for XTE J1550-564 a mass 8?M ⊙≤M BH≤11?M ⊙. This is consistent with other independent estimations of the black hole mass. Finally for H1743-322, we found the following bounds, 9?M ⊙≤M BH≤13?M ⊙. 相似文献
997.
The efficacy of fast?–?slow MHD mode conversion in the surface layers of sunspots has been demonstrated over recent years using a number of modelling techniques, including ray theory, perturbation theory, differential eigensystem analysis, and direct numerical simulation. These show that significant energy may be transferred between the fast and slow modes in the neighbourhood of the equipartition layer where the Alfvén and sound speeds coincide. However, most of the models so far have been two dimensional. In three dimensions the Alfvén wave may couple to the magnetoacoustic waves with important implications for energy loss from helioseismic modes and for oscillations in the atmosphere above the spot. In this paper, we carry out a numerical “scattering experiment,” placing an acoustic driver 4 Mm below the solar surface and monitoring the acoustic and Alfvénic wave energy flux high in an isothermal atmosphere placed above it. These calculations indeed show that energy conversion to upward travelling Alfvén waves can be substantial, in many cases exceeding loss to slow (acoustic) waves. Typically, at penumbral magnetic field strengths, the strongest Alfvén fluxes are produced when the field is inclined 30°?–?40° from the vertical, with the vertical plane of wave propagation offset from the vertical plane containing field lines by some 60°?–?80°. 相似文献
998.
At the surface of the Sun, acoustic waves appear to be affected by the presence of strong magnetic fields in active regions. We explore the possibility that the inclined magnetic field in sunspot penumbrae may convert primarily vertically-propagating acoustic waves into elliptical motion. We use helioseismic holography to measure the modulus and phase of the correlation between incoming acoustic waves and the local surface motion within two sunspots. These correlations are modeled by assuming the surface motion to be elliptical, and we explore the properties of the elliptical motion on the magnetic-field inclination. We also demonstrate that the phase shift of the outward-propagating waves is opposite to the phase shift of the inward-propagating waves in stronger, more vertical fields, but similar to the inward phase shifts in weaker, more-inclined fields. 相似文献
999.
O. S. Shalygina V. V. Korokhin L. V. Starukhina E. V. Shalygin G. P. Marchenko Yu. I. Velikodsky O. M. Starodubtseva L. A. Akimov 《Solar System Research》2008,42(1):8-17
We present new results obtained from the analysis of the seasonal variations in the asymmetry of polarization of light reflected by Jupiter. From the 23-year set of observations, the anticorrelation between the asymmetries of polarization and insolation has been revealed. The mechanism explaining the observed seasonal variations of polarization has been proposed. The core of this mechanism is the effect of temperature changes in the planetary stratosphere on the processes of the stratospheric aerosol haze formation. Additional irregular factors that may influence the observed polarization asymmetry are considered. 相似文献
1000.
P. A. Woudt R. C. Kraan-Korteweg J. Lucey A. P. Fairall S. A. W. Moore 《Monthly notices of the Royal Astronomical Society》2008,383(2):445-457
A detailed dynamical analysis of the nearby rich Norma cluster (ACO 3627) is presented. From radial velocities of 296 cluster members, we find a mean velocity of 4871 ± 54 km s−1 and a velocity dispersion of 925 km s−1 . The mean velocity of the E/S0 population (4979 ± 85 km s−1 ) is offset with respect to that of the S/Irr population (4812 ± 70 km s−1 ) by Δ v = 164 km s−1 in the cluster rest frame. This offset increases towards the core of the cluster. The E/S0 population is free of any detectable substructure and appears relaxed. Its shape is clearly elongated with a position angle that is aligned along the dominant large-scale structures in this region, the so-called Norma wall. The central cD galaxy has a very large peculiar velocity of 561 km s−1 which is most probably related to an ongoing merger at the core of the cluster. The spiral/irregular galaxies reveal a large amount of substructure; two dynamically distinct subgroups within the overall spiral population have been identified, located along the Norma wall elongation. The dynamical mass of the Norma cluster within its Abell radius is 1–1.1 × 1015 h −1 73 M⊙ . One of the cluster members, the spiral galaxy WKK 6176 which recently was observed to have a 70 kpc X-ray tail, reveals numerous striking low-brightness filaments pointing away from the cluster centre suggesting strong interaction with the intracluster medium. 相似文献