首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   63076篇
  免费   921篇
  国内免费   596篇
测绘学   1832篇
大气科学   4645篇
地球物理   13067篇
地质学   21539篇
海洋学   5332篇
天文学   14383篇
综合类   146篇
自然地理   3649篇
  2021年   435篇
  2020年   477篇
  2019年   562篇
  2018年   1217篇
  2017年   1120篇
  2016年   1535篇
  2015年   919篇
  2014年   1465篇
  2013年   3019篇
  2012年   1641篇
  2011年   2272篇
  2010年   2012篇
  2009年   2750篇
  2008年   2451篇
  2007年   2423篇
  2006年   2329篇
  2005年   1855篇
  2004年   1890篇
  2003年   1771篇
  2002年   1802篇
  2001年   1561篇
  2000年   1496篇
  1999年   1349篇
  1998年   1324篇
  1997年   1336篇
  1996年   1096篇
  1995年   1066篇
  1994年   998篇
  1993年   893篇
  1992年   809篇
  1991年   763篇
  1990年   789篇
  1989年   732篇
  1988年   731篇
  1987年   830篇
  1986年   738篇
  1985年   941篇
  1984年   1092篇
  1983年   1024篇
  1982年   932篇
  1981年   857篇
  1980年   815篇
  1979年   772篇
  1978年   789篇
  1977年   675篇
  1976年   674篇
  1975年   652篇
  1974年   655篇
  1973年   690篇
  1972年   466篇
排序方式: 共有10000条查询结果,搜索用时 0 毫秒
71.
72.
Summary ?The NW–SE-trending Yulong porphyry Cu–Mo ore belt, situated in the Sanjiang0 area of eastern Tibet, is approximately 400 km long and 35 to 70 km wide. Complex tectonic and magmatic processes during the Himalayan epoch have given rise to favorable conditions for porphyry-type Cu–Mo mineralization. Porphyry masses of the Himalayan epoch in the Yulong ore belt are distributed in groups along regional NW–SE striking tectonic lineaments. They were emplaced mainly into Triassic and Lower Permian sedimentary-volcanic rocks. K–Ar und U–Pb isotopic datings give an intrusion age range of 57–26 Ma. The porphyries are mainly of biotite monzogranitic and biotite syenogranitic compositions. Geological and geochemical data indicate that the various porphyritic intrusions in the belt had a common or similar magma source, are metaluminous to peraluminous, Nb–Y–Ba-depleted, I-type granitoids, and belong to the high-K calc-alkaline series. Within the Yulong subvolcanic belt a number of porphyry stocks bear typical porphyry type Cu–Mo alteration and mineralization. The most prominent porphyry Co–Mo deposits include Yulong, Malasongduo, Duoxiasongduo, Mangzong and Zhanaga, of which Yulong is one of the largest porphyry Cu (Mo) deposits in China with approximately 8 × 106 tons of contained Cu metal. Hydrothermal alteration at Yulong developed around a biotite–monzogranitic porphyry stock that was emplaced within Upper Triassic limestone, siltstone and mudstone. The earliest alteration was due to the effects of contact metamorphism of the country rocks and alkali metasomatism (potassic alteration) within and around the porphyry body. The alteration of this stage was accompanied by a small amount of disseminated and veinlet Cu–Mo sulfide mineralization. Later alteration–mineralization zones form more or less concentric shells around the potassic zone, around which are distributed a phyllic or quartz–sericite–pyrite zone, a silicification and argillic zone, and a propylitic zone. Fluid inclusion data indicate that three types of fluids were involved in the alteration–mineralization processes: (1) early high temperature (660–420 °C) and high salinity (30–51 wt% NaCl equiv) fluids responsible for the potassic alteration and the earliest disseminated and/or veinlet Cu–Mo sulfide mineralization; (2) intermediate unmixed fluids corresponding to phyllic alteration and most Cu–Mo sulfide mineralization, with salinities of 30–50 wt% NaCl equiv and homogenization temperatures of 460–280 °C; and (3) late low to moderate temperature (300–160 °C) and low salinity (6–13 wt% NaCl equiv) fluids responsible for argillic and propylitic alteration. Hydrogen and oxygen isotopic studies show that the early hydrothermal fluids are of magmatic origin and were succeeded by increasing amounts of meteoric-derived convective waters. Sulfur isotopes also indicate a magmatic source for the sulfur in the early sulfide mineralization, with the increasing addition of sedimentary sulfur outward from the porphyry stock. Received August 29, 2001; revised version accepted May 1, 2002 Published online: November 29, 2002  相似文献   
73.
74.
75.
Systematic mapping of a transect along the well-exposed shores of Georgian Bay, Ontario, combined with the preliminary results of structural analysis, geochronology and metamorphic petrology, places some constraints on the geological setting of high-grade metamorphism in this part of the Central Gneiss Belt. Correlations within and between map units (gneiss associations) have allowed us to recognize five tectonic units that differ in various aspects of their lithology, metamorphic and plutonic history, and structural style. The lowest unit, which forms the footwall to a regional decollement, locally preserves relic pre-Grenvillian granulite facies assemblages reworked under amphibolite facies conditions during the Grenvillian orogeny. Tectonic units above the decollement apparently lack the early granulite facies metamorphism; out-of-sequence thrusting in the south produced a duplex-like structure. Two distinct stages of Grenvillian metamorphism are apparent. The earlier stage (c. 1160–1120 Ma) produced granulite facies assemblages in the Parry Sound domain and upper amphibolite facies assemblages in the Parry Island thrust sheet. The later stage (c. 1040–1020 Ma) involved widespread, dominantly upper amphibolite facies metamorphism within and beneath the duplex. Deformation and metamorphism recently reported from south and east of the Parry Sound domain at c. 1100–1040 Ma have not yet been documented along the Georgian Bay transect. The data suggest that early convergence was followed by a period of crustal thickening in the orogenic core south-east of the transect area, with further advance to the north-west during and after the waning stages of this deformation.  相似文献   
76.
We present the modeling of the ultraviolet and optical spectra obtained simultaneously on 1993 April 15 with the HST and at Lick Observatory. A Monte Carlo code is employed in the modeling and a comparison is made between models reported by different groups. With an atmosphere similar to the Sun in chemical composition, the observed spectral lines are well reproduced by a power law density structure of index around 20 except the strong H and HeI λ5876 lines which have peculiar absorption profiles. The photospheric velocity is found to be 9500 km/s and the blackbody temperature of the spectrum is 7990 K. For H and HeI λ5876, we suggest a two-component density structure which has a smoother layer located immediately outside the steeply decreasing inner envelope. The power law indices are most probably 20 and 3, respectively, with the transition point at about 13 000 km/s. In addition, this outer smooth layer serves to flatten the far UV spectrum as observed.  相似文献   
77.
78.
Globorotalia puncticulata and Globorotalia margaritae are critical species that define internationally recognized planktonic foraminiferal biozones in the Pliocene. These biozones are defined from stratotype sections on Sicily and their fauna are commonly considered to have been introduced to the Mediterranean after an influx of Atlantic water that terminated the late Miocene desiccation of the basin. Herein new discoveries of these species in rocks that predate the late Miocene desiccation are described. These data are supported by magneto- and lithostratigraphy that have been integrated at a single continuous section. Not only do these discoveries question the existing foraminiferal biozone stratigraphy, they also suggest new models for the dispersal of planktonic species. It is proposed that Globorotalia puncticulata and perhaps even Globorotalia margaritae evolved in the Mediterranean during earliest Messinian times (during or before chron C3Bn1n) and dispersed into the Atlantic. This suggests that a marine connection remained between the two sea areas until at least chron C3An.1n. Using the existing geomagnetic polarity time scale, these occurrences are some 2 Myr earlier than previously recorded in the Mediterranean. The distribution of G. margaritae and G. puncticulata in Mediterranean sections is likely to reflect palaeoenvironment or the preservation of deposits rather than the absolute age of the sediments.  相似文献   
79.
The Palaeoproterozoic Lapland Granulite Belt is a seismically reflective and electrically conductive sequence of deep crustal (6–9 kbar) rocks in the northern Fennoscandian Shield. It is composed of garnet-sillimanite gneisses (khondalites) and pyroxene granulites (enderbites) which in certain thrust sheets form about 500 m thick interlayers. The structure was formed by the intrusion of intermediate to basic magmas into turbiditic sedimentary rocks under granulite facies metamorphism accompanied by shearing of the deep crust about 1.93–1.90 Gyr ago (Gal. Granulites were upthrust 1.90–1.87 Ga and the belt was divided by crustal scale duplexing into four structural units whose layered structure was preserved. The thrust structures are recognized by the repetition of lithological ensembles and by discordant structural patterns well distinguishable in airborne magnetic and electromagnetic data. Thrusting gave rise to clockwise pressure-temperature evolution of the belt. However, some basic rocks possibly record an isobaric cooling path. The low bulk resistivity of the belt (200–1000 Ωm) is caused by interconnected graphite and subordinate sulphides in shear zones. On the basis of carbon isotope ratios this graphite is derived mostly from sedimentary organic carbon. The seismic reflectivity of the belt may be caused by velocity and density differences between pyroxene granulites and khondalites, as well as by shear zones.  相似文献   
80.
Thinly stratified sedimentary deposits in a heterogeneous field were investigated to obtain basic physical data for the simulation of water flow. A procedure is described which translates a thinly stratified soil profile into a number of functional layers using functional hydrological properties. A functional layer is defined as a combination of one or more soil horizons and should (i) be recognizable during a soil survey using an auger and (ii) show significantly different functional hydrological properties when compared with another functional layer. This procedure gave three easily recognizable functional layers. Sets of hydrological characteristics of these three functional layers were obtained by physical measurements of the soil and by estimation, using textural data for classification into a standard Dutch series. The performance of several combinations of these sets was tested by comparing simulated and measured soil matric potentials for seven plots during one year. The best simulation results were obtained if measured soil hydraulic characteristics were used for relatively homogeneous functional layers and if the soil hydraulic characteristics were estimated at each location for the most heterogeneous layer.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号