首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   317篇
  免费   15篇
  国内免费   1篇
测绘学   5篇
大气科学   7篇
地球物理   47篇
地质学   137篇
海洋学   11篇
天文学   94篇
自然地理   32篇
  2021年   4篇
  2020年   5篇
  2019年   2篇
  2018年   5篇
  2017年   8篇
  2016年   9篇
  2015年   6篇
  2014年   7篇
  2013年   14篇
  2012年   11篇
  2011年   10篇
  2010年   11篇
  2009年   16篇
  2008年   15篇
  2007年   12篇
  2006年   11篇
  2005年   10篇
  2004年   5篇
  2003年   6篇
  2002年   12篇
  2001年   4篇
  2000年   8篇
  1999年   12篇
  1998年   9篇
  1997年   5篇
  1996年   10篇
  1995年   5篇
  1994年   7篇
  1993年   2篇
  1992年   4篇
  1991年   4篇
  1990年   3篇
  1986年   5篇
  1985年   8篇
  1984年   7篇
  1983年   4篇
  1982年   5篇
  1981年   7篇
  1980年   8篇
  1979年   2篇
  1978年   4篇
  1977年   5篇
  1976年   3篇
  1975年   4篇
  1974年   2篇
  1973年   5篇
  1968年   2篇
  1934年   1篇
  1882年   1篇
  1877年   2篇
排序方式: 共有333条查询结果,搜索用时 625 毫秒
291.
292.
Siderophores are biogenic chelating agents produced in terrestrial and marine environments that increase the bioavailability of ferric iron. Recent work has suggested that both aqueous and solid-phase Mn(III) may affect siderophore-mediated iron transport, but scant information appears to be available about the potential roles of layer type manganese oxides, which are relatively abundant in soils and the oligotrophic marine water column. To probe the effects of layer type manganese oxides on the stability of aqueous Fe-siderophore complexes, we studied the sorption of ferrioxamine B [Fe(III)HDFOB+, an Fe(III) chelate of the trihydroxamate siderophore desferrioxamine B (DFOB)] to two synthetic birnessites [layer type Mn(III,IV) oxides] and a biogenic birnessite produced by Pseudomonas putida GB-1. We found that all of these predominantly Mn(IV) oxides greatly reduced the aqueous concentration of Fe(III)HDFOB+ at pH 8. Analysis of Fe K-edge EXAFS spectra indicated that a dominant fraction of Fe(III) associated with the Mn(IV) oxides is not complexed by DFOB as in solution, but instead Fe(III) is specifically adsorbed to the mineral structure at multiple sites, thus indicating that the Mn(IV) oxides displaced Fe(III) from the siderophore complex. These results indicate that layer type manganese oxides, including biogenic minerals, may sequester iron from soluble ferric complexes. We conclude that the sorption of iron-siderophore complexes may play a significant role in the bioavailability and biogeochemical cycling of iron in marine and terrestrial environments.  相似文献   
293.
The biogeochemistry of trivalent iron, manganese, and cobalt in the oceans is dominated by soluble complexes formed with high-affinity organic ligands that are believed to be microbial siderophores or similar biogenic chelating agents. Desferrioxamine B (DFOB), a trihydroxamate siderophore found in both terrestrial and marine environments, has served as a useful model for a large class of microbial siderophores in studies of 1:1 complexes formed with trivalent iron and manganese. However, no data exist concerning DFOB complexes with Co(III), which we hypothesize should be as strong as those with Fe(III) and Mn(III) if the current picture of the ocean biogeochemistry of the three trivalent metals is accurate. We investigated the complexation reaction between DFOB and Co(III) in aqueous solution at seawater pH using base and redox titrations, and then characterized the resulting 1:1 complex Co(III)HDFOB+ using X-ray absorption, resonance Raman spectroscopy, and quantum mechanical structural optimizations. We found that the complex stability constant for Co(III)HDFOB+ (log K [Co(III)HDFOB+] = 37.5 ± 0.4) is in fact five and seven orders of magnitude larger than that for Fe(III)HDFOB+ (log K[Fe(III)HDFOB+] = 32.02) and Mn(III)HDFOB+ (log K[Mn(III)HDFOB+] = 29.9), respectively. Spectroscopic data and the supporting theoretical structural optimizations elucidated the molecular basis for this exceptional stability. Although not definitive, our results nevertheless are consistent with the evolution of siderophores as a response by bacteria to oxygenation, not only because of sharply decreasing concentrations of Fe(III), but also of Co(III).  相似文献   
294.
295.
The October 2005 earthquake triggered several thousand landslides in the Lesser Himalaya of Kashmir in northern Pakistan and India. Analyses of ASTER satellite imagery from 2001 were compared with a study undertaken in 2005; the results show the extent and nature of pre- and co-/post-seismic landsliding. Within a designated study area of ~2,250 km2, the number of landslides increased from 369 in 2001 to 2,252 in October 2005. Assuming a balanced baseline landsliding frequency over the 4 years, most of the new landslides were likely triggered by the 2005 earthquake and its aftershocks. These landslides mainly happened in specific geologic formations, along faults, rivers and roads, and in shrubland/grassland and agricultural land. Preliminary results from repeat photographs from 2005 and 2006 after the snowmelt season reveal that much of the ongoing landsliding occurred along rivers and roads, and the extensive earthquake-induced fissuring. Although the susceptibility zoning success rate for 2001 was low, many of the co-/post-seismic landsliding in 2005 occurred in areas that had been defined as being potentially dangerous on the 2001 map. While most of the area in 2001 was (very) highly susceptible to future landsliding, most of the area in 2005 was only moderate to low susceptible, that is, most of the landsliding in 2005 actually occurred in the potentially dangerous areas on the 2001 map. This study supports the view that although susceptibility zoning maps represent a powerful tool in natural hazard management, caution is needed when developing and using such maps.  相似文献   
296.
It is suggested that in a localized remnant of Kalahari sand at Dufuya, central Zimbabwe, groundwater flows in an integrated pattern inherited from the paleochannel network of the underlying gneiss. Contact springs occur at discrete localities along the Kalahari sand/gneiss boundary and are associated with spring sapping and land surface subsidence. Subsidence is presumed to be due to preferential solute removal by leaching and dissolution as a result of concentration of groundwater flow within the buried paleochannel network and the location of the springs is presumed to occur where the paleochannel network intersects the Kalahari sand/gneiss boundary. Over time the surficial Kalahari sand is preferentially removed along these buried drainage lines by spring sapping and headwards erosion, exposing the gneiss. Multi-electrode direct current resistivity profiling and radar have been used to map the sub-surface, revealing the topography of the basement and nature of the Kalahari cover. Coincidence of gneiss basement depressions with the spring sites, leached sands and subsidence zones suggests inheritance of the gneiss fluvial paleochannel network pattern by the present day groundwater flow. Washed sand and gravel intersected in shallow boreholes in these areas provides further evidentiary support for the concept of inherited drainage.  相似文献   
297.
This note summarizes the results from the Mars recent climate change workshop at NASA/Ames Research Center, May 15–17, 2012.  相似文献   
298.
Abstract— Considerable evidence points to a martian origin of the SNC meteorites. Noble gas isotopic compositions have been measured in most SNC meteorites. The 129Xe/132Xe vs. 84Kr/132Xe ratios in Chassigny, most shergottites, and lithology C of EETA 79001 define a linear array. This array is thought to be a mixing line between martian mantle and martian atmosphere. One of the SNC meteorites, Nakhla, contains a leachable component that has an elevated 129Xe/132Xe ratio relative to its 84Kr/132Xe ratio when compared to this approximately linear array. The leachable component probably consists in part of iddingsite, an alteration product produced by interaction of olivine with aqueous fluid at temperatures lower than 150 °C. The elevated Xe isotopic ratio may represent a distinct reservoir in the martian crust or mantle. More plausibly, it is elementally fractionated martian atmosphere. Formation of sediments fractionates the noble gases in the correct direction. The range of sediment/atmosphere fractionation factors is consistent with the elevated 129Xe/132Xe component in Nakhla being contained in iddingsite, a low temperature weathering product. The crystallization age of Nakhla is 1.3 Ga. Its low-shock state suggests that it was ejected from near the surface of Mars. As liquid water is required for the formation of iddingsite, these observations provide further evidence for the near surface existence of aqueous fluids on Mars more recently than 1.3 Ga.  相似文献   
299.
300.
The discovery that Titan had an atmosphere was made by the identification of methane in the satellite's spectrum in 1944. But the abundance of this gas and the identification of other major constituents required the 1980 encounter by the Voyager 1 spacecraft. In the intervening years, traces of C2H2, C2H4, C2H6 and CH3D had been posited to interpret emission bands in Titan's i.r. spectrum. The Voyager Infra-red Spectrometer confirmed that these gases were present and added seven more. The atmosphere is now known to be composed primarily of molecular nitrogen. But the derived mean molecular weight suggests the presence of a significant amount of some heavier gas, most probably argon. It is shown that this argon must be primordial, and that one can understand the evolution of Titan's atmosphere in terms of degassing of a mixed hydrate dominated by CH4, N2 and 36Ar. This model satisfactorily explains the absence of neon and makes no special requirements on the satellite's surface temperature.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号