首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   738篇
  免费   20篇
  国内免费   1篇
测绘学   8篇
大气科学   48篇
地球物理   178篇
地质学   263篇
海洋学   71篇
天文学   118篇
综合类   1篇
自然地理   72篇
  2022年   3篇
  2021年   9篇
  2020年   10篇
  2019年   12篇
  2018年   7篇
  2017年   12篇
  2016年   22篇
  2015年   21篇
  2014年   30篇
  2013年   37篇
  2012年   26篇
  2011年   32篇
  2010年   49篇
  2009年   40篇
  2008年   22篇
  2007年   35篇
  2006年   19篇
  2005年   23篇
  2004年   29篇
  2003年   21篇
  2002年   31篇
  2001年   16篇
  2000年   14篇
  1999年   10篇
  1998年   13篇
  1997年   12篇
  1996年   15篇
  1995年   4篇
  1994年   12篇
  1993年   3篇
  1992年   8篇
  1991年   8篇
  1990年   9篇
  1988年   3篇
  1987年   6篇
  1986年   6篇
  1985年   10篇
  1984年   8篇
  1983年   7篇
  1982年   7篇
  1981年   9篇
  1980年   6篇
  1979年   6篇
  1978年   18篇
  1977年   8篇
  1976年   7篇
  1974年   4篇
  1973年   5篇
  1972年   5篇
  1971年   5篇
排序方式: 共有759条查询结果,搜索用时 0 毫秒
751.
752.
Determination of internal wave properties from X-Band radar observations   总被引:2,自引:0,他引:2  
The application of nautical X-Band radars to measure internal wave (IW) properties is investigated. A methodology based on the use of Radon transform (RT) techniques to detect internal wave related features from backscatter image sequences is introduced to compute properties such as direction of propagation, non-linear velocity (c0), distance between solitons (Lcc) and number of solitons per packet. The proposed methodology was applied to several events recorded by a ship-mounted X-Band radar system (WaMoS) during the NLIWI experiment in 2006. Results from the comparisons to simultaneous measurements taken at neighboring oceanographic moorings indicated that c0 can be estimated with a RMS error of 0.06 m s−1, which corresponds to a mean relative error of −1.4%. Similarly, Lcc can be estimated with a RMS error of 98 m, which is associated with a mean relative error of 14.6%. This latter error estimate however is likely to be overestimated, because it reflects strongly the separation between sampling stations as Lcc was shown to be highly dependent on propagation distance. The accuracy of the results shows that X-Band systems are well suited to measure internal wave properties offering some advantages over SAR and other in situ devices.  相似文献   
753.
The Faroe Islands in the North Atlantic Ocean are susceptible to flow-type landslides in coarse-grained highly organic colluvium. Following several hazardous debris avalanche events, research work has been initiated to quantify landslide risk. A central task in this work is to predict landslide runout behavior. From numerical simulation of four debris avalanches, this study provides a first screening of which rheology and appertaining input parameters best predict runout behavior of debris avalanches in the Faroe Islands. Three rheologies (frictional, Voellmy, and Bingham) are selected and used for individual back analysis of the events in the numerical models BING and DAN3D. A best fit rheology is selected from comparing predicted and observed landslide runout behavior. General back analysis to identify the optimal input parameters for the chosen rheology is performed by cross validation, where each debris avalanche is modeled with input parameters from the three other events. Optimal input parameters are found from the model run producing the most accurate runout length and velocity. The Bingham is selected as the best fit rheology, a result differing from similar studies of coarse-grained landslides. A reason for why particularly the frictional rheology proves unsuitable is its tendency to produce too long runout lengths of the low-weight runout material, a result showing important limitations for using the frictional rheology in DAN3D. Optimal Bingham input parameters are τ y ?=?980 Pa and μ b ?=?117 Pa/s. However, future studies performed in 2D models are needed for precise parameterization before results can be used for landslide risk assessment.  相似文献   
754.
755.
Hydrometric measurements, electrical conductivity, water isotopic and hydrochemical components of stream water were used to study summer runoff generation in a flat fen. Different processes generated runoff at low- and high-flows. At storm-flows, fen runoff was generated from overland flow, originating from upland surface water. Temporary storage of water on the fen surface attenuated and delayed flow peaks. At low-flows, runoff at the fen outlet was generated from shallow subsurface flow in the Acrotelm. During low-flow periods, water originated mainly from peat storage water while during episodic events the wetland water storage was renewed by inflowing stream water. Assessment and modeling of hydrological effects of peatlands should be performed separately for low-flows and high-flows, based on the dominating runoff generating processes. Attenuation and retardation of storm-flows in fens by temporary surface storage will depend on the geometric properties of both storage sections and sections controlling outflow. A routing reservoir model adapted for flat fens can be used for simulation of attenuation and retardation in runoff events, and it is suggested that the model concept should be tested for a broader range of peatlands.  相似文献   
756.
To examine the suitability of fish scales as a historical archive, of environmental mercury (Hg) contamination, we analyzed a collection of scales taken from striped bass (Morone saxatilis) captured in the St. Lawrence Estuary between 1994 and 1962. The total mass of Hg in individual scales increases linearly with the weight of the scale, suggesting that Hg is well preserved in the scale tissue. Age, length, and sex of specimens captured during the same year did not significantly influence the concentration of Hg in the scales. The average Hg concentrations in scales of specimens captured in 1956 (53.2 ±9.1 ng g−1) and 1962 (58.6±7.7 ng g−1) are nearly twice as high as in scales from 1951 (30.2±3.0 ng g−1). These results follow the trend revealed in sediment cores from the St. Lawrence Estuary. A high level of Hg in scales from 1945 (68.7±18.4 ng g−1) could have been caused by an episode of Hg contamination around 1945 not recorded in the sediment or by a diet-related change in Hg exposure.  相似文献   
757.
The water mass distribution in northern Fram Strait and over the Yermak Plateau in summer 1997 is described using CTD data from two cruises in the area. The West Spitsbergen Current was found to split, one part recirculated towards the west, while the other part, on entering the Arctic Ocean separated into two branches. The main inflow of Atlantic Water followed the Svalbard continental slope eastward, while a second, narrower, branch stayed west and north of the Yermak Plateau. The water column above the southeastern flank of the Yermak Plateau was distinctly colder and less saline than the two inflow branches. Immediately west of the outer inflow branch comparatively high temperatures in the Atlantic Layer suggested that a part of the extraordinarily warm Atlantic Water, observed in the boundary current in the Eurasian Basin in the early 1990s, was now returning, within the Eurasian Basin, toward Fram Strait. The upper layer west of the Yermak Plateau was cold, deep and comparably saline, similar to what has recently been observed in the interior Eurasian Basin. Closer to the Greenland continental slope the salinity of the upper layer became much lower, and the temperature maximum of the Atlantic Layer was occasionally below 0.5 °C, indicating water masses mainly derived from the Canadian Basin. This implies that the warm pulse of Atlantic Water had not yet made a complete circuit around the Arctic Ocean. The Atlantic Water of the West Spitsbergen Current recirculating within the strait did not extend as far towards Greenland as in the 1980s, leaving a broader passage for waters from the Atlantic and intermediate layers, exiting the Arctic Ocean. A possible interpretation is that the circulation pattern alternates between a strong recirculation of the West Spitsbergen Current in the strait, and a larger exchange of Atlantic Water between the Nordic Seas and the inner parts of the Arctic Ocean.  相似文献   
758.
We conduct a high-resolution large-eddy simulation (LES) case study in order to investigate the effects of surface heterogeneity on the (local) structure parameters of potential temperature \(C_T^2\) and specific humidity \(C_q^2\) in the convective boundary layer (CBL). The kilometre-scale heterogeneous land-use distribution as observed during the LITFASS-2003 experiment was prescribed at the surface of the LES model in order to simulate a realistic CBL development from the early morning until early afternoon. The surface patches are irregularly distributed and represent different land-use types that exhibit different roughness conditions as well as near-surface fluxes of sensible and latent heat. In the analysis, particular attention is given to the Monin–Obukhov similarity theory (MOST) relationships and local free convection (LFC) scaling for structure parameters in the surface layer, relating \(C_T^2\) and \(C_q^2\) to the surface fluxes of sensible and latent heat, respectively. Moreover we study possible effects of surface heterogeneity on scintillometer measurements that are usually performed in the surface layer. The LES data show that the local structure parameters reflect the surface heterogeneity pattern up to heights of 100–200 m. The assumption of a blending height, i.e. the height above the surface where the surface heterogeneity pattern is no longer visible in the structure parameters, is studied by means of a two-dimensional correlation analysis. We show that no such blending height is found at typical heights of scintillometer measurements for the studied case. Moreover, \(C_q^2\) does not follow MOST, which is ascribed to the entrainment of dry air at the top of the boundary layer. The application of MOST and LFC scaling to elevated \(C_T^2\) data still gives reliable estimates of the surface sensible heat flux. We show, however, that this flux, derived from scintillometer data, is only representative of the footprint area of the scintillometer, whose size depends strongly on the synoptic conditions.  相似文献   
759.
Model diagnostic analyses help to improve the understanding of hydrological processes and their representation in hydrological models. A detailed temporal analysis detects periods of poor model performance and model components with potential for model improvements, which cannot be found by analysing the whole discharge time series. In this study, we aim to improve the understanding of hydrological processes by investigating the temporal dynamics of parameter sensitivity and of model performance for the Soil and Water Assessment Tool model applied to the Treene lowland catchment in Northern Germany. The temporal analysis shows that the parameter sensitivity varies temporally with high sensitivity for three groundwater parameters (groundwater time delay, baseflow recession constant and aquifer fraction coefficient) and one evaporation parameter (soil evaporation compensation factor). Whereas the soil evaporation compensation factor dominates in baseflow and resaturation periods, groundwater time delay, baseflow recession constant and aquifer fraction coefficient are dominant in the peak and recession phases. The temporal analysis of model performance identifies three clusters with different model performances, which can be related to different phases of the hydrograph. The lowest performance, when comparing six performance measures, is detected for the baseflow cluster. A spatially distributed analysis for six hydrological stations within the Treene catchment shows similar results for all stations. The linkage of periods with poor model performance to the dominant model components in these phases and with the related hydrological processes shows that the groundwater module has the highest potential for improvement. This temporal diagnostic analysis enhances the understanding of the Soil and Water Assessment Tool model and of the dominant hydrological processes in the lowland catchment. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号