首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   468篇
  免费   10篇
  国内免费   12篇
测绘学   19篇
大气科学   86篇
地球物理   108篇
地质学   157篇
海洋学   24篇
天文学   54篇
综合类   2篇
自然地理   40篇
  2021年   3篇
  2020年   7篇
  2017年   10篇
  2016年   11篇
  2015年   7篇
  2014年   9篇
  2013年   28篇
  2012年   11篇
  2011年   17篇
  2010年   16篇
  2009年   21篇
  2008年   16篇
  2007年   16篇
  2006年   21篇
  2005年   23篇
  2004年   16篇
  2003年   21篇
  2002年   17篇
  2001年   14篇
  2000年   5篇
  1999年   10篇
  1998年   7篇
  1997年   4篇
  1996年   6篇
  1995年   5篇
  1994年   8篇
  1993年   10篇
  1992年   4篇
  1991年   5篇
  1989年   5篇
  1987年   5篇
  1985年   6篇
  1984年   8篇
  1983年   7篇
  1982年   4篇
  1981年   7篇
  1980年   7篇
  1979年   7篇
  1978年   3篇
  1977年   6篇
  1976年   6篇
  1975年   12篇
  1974年   4篇
  1973年   7篇
  1971年   5篇
  1970年   7篇
  1969年   4篇
  1968年   5篇
  1967年   6篇
  1958年   2篇
排序方式: 共有490条查询结果,搜索用时 16 毫秒
21.
Ionization fronts, the sharp radiation fronts behind which H/He ionizing photons from massive stars and galaxies propagate through space, were ubiquitous in the universe from its earliest times. The cosmic dark ages ended with the formation of the first primeval stars and galaxies a few hundred Myr after the Big Bang. Numerical simulations suggest that stars in this era were very massive, 25–500 solar masses, with H(II) regions of up to 30,000 light-years in diameter. We present three-dimensional radiation hydrodynamical calculations that reveal that the I-fronts of the first stars and galaxies were prone to violent instabilities, enhancing the escape of UV photons into the early intergalactic medium (IGM) and forming clumpy media in which supernovae later exploded. The enrichment of such clumps with metals by the first supernovae may have led to the prompt formation of a second generation of low-mass stars, profoundly transforming the nature of the first protogalaxies. Cosmological radiation hydrodynamics is unique because ionizing photons coupled strongly to both gas flows and primordial chemistry at early epochs, introducing a hierarchy of disparate characteristic timescales whose relative magnitudes can vary greatly throughout a given calculation. We describe the adaptive multistep integration scheme we have developed for the self-consistent transport of both cosmological and galactic ionization fronts.  相似文献   
22.
Antineutrino data constrain the concentrations of the heat producing elements U and Th as well as potentially the concentration of K. Interpretation is similar to but not homologous with gravity. Current geoneutrino physics efficiently asks simple questions taking advantage of what is already known about the Earth. A few measurements with some sites in the ocean basins will constrain the concentration of U and Th in the crust and mantle and whether the mantle is laterally heterogeneous. These results will allow Earth science arguments about the formation, chemistry, and dynamics of the Earth to be turned around and appraised. In particular, they will tell whether the Earth accreted its expected share of these elements from the solar nebula and how long radioactive heat will sustain active geological processes on the Earth. Both aspects are essential to evaluating the Earth as a common or rare habitable planet.  相似文献   
23.
We present photoelectric photometry of λ And never before published, obtained between February 1982 and December 1990 at 29 different observatories. Then we combine it with all other photometry available to us (previously published, contained in the I.A.U. Commission 27 Archives, and obtained with the Vanderbilt 16-inch automatic telescope but not yet published), to yield a 14.8-year data base. Analysis reveals a long-term cycle in mean brightness, with a full range of 0m.15 and a period of 11.4 ± 0.4 years. Because most of our new photometry was concentrated in the 1983-84 observing season, we analyze that one well-defined light curve with a two-spot model. Spot A keeps a 0m.04 amplitude throughout four rotation cycles whereas the amplitude of spot B diminishes from 0m.09 down almost to 0m.03. The spot rotation periods were 55d.9 ± 0d.6 and 520d.8 ± 1d.0, respectively.  相似文献   
24.
Power spectra based on Pioneer 6 interplanetary magnetic field data in early 1966 exhibit a frequency dependence of f –2 in the range 2.8 × 10–4 to 1.6 × 10–2 cps for periods of both quiet and disturbed field conditions. Both the shape and power levels of these spectra are found to be due to the presence of directional discontinuities in the microstructure (< 0.01 AU) of the interplanetary magnetic field. Power spectra at lower frequencies, in the range of 2.3 × 10–6 to 1.4 × 10–4 cps, reflect the field macrostructure (> 0.1 AU) and exhibit a frequency dependence roughly between f –1 and f –3/2. The results are related to theories of galactic cosmic-ray modulation and are found to be consistent with recent observations of the modulation.  相似文献   
25.
Major-element compositions of minerals in peridotite xenoliths from the Lac de Gras kimberlites provide constraints on the mode of lithosphere formation beneath the central Slave Craton, Canada. Magnesia contents of reconstructed whole rocks correlate positively with NiO and negatively with CaO contents, consistent with variable partial melt extraction. Alumina and Cr2O3 contents are broadly positively correlated, suggestive of melt depletion in the absence of a Cr–Al phase. Garnet modes are high at a given Al2O3 content (a proxy for melt depletion), falling about a 7 GPa melt depletion model. These observations, combined with high olivine Mg# and major-element relationships of FeO-poor peridotites (<7.5 wt%) indicative of melt loss at pressures >3 GPa (residual FeO content being a sensitive indicator of melt extraction pressure), and similar high pressures of last equilibration (∼4.2 to 5.8 GPa), provide multiple lines of evidence that the mantle beneath the central Slave Craton has originated as a residue from high-pressure melting, possibly during plume subcretion. Apparent low melt depletion pressures for high-FeO peridotites (>7.5 wt%) could suggest formation in an oceanic setting, followed by subduction to their depth of entrainment. However, these rocks, which are characterised by low SiO2 contents (<43 wt%), are more likely to be the result of post-melting FeO-addition, leading to spuriously low estimates of melt extraction pressures. They may have reacted with a silica-undersaturated melt that dissolved orthopyroxene, or experienced olivine injection by crystallising melts. A secular FeO-enrichment of parts of the deep mantle lithosphere is supported by lower average Mg# in xenolithic olivine (91.7) compared to olivine inclusions in diamond (92.6).  相似文献   
26.
27.
The LA‐ICP‐MS U‐(Th‐)Pb geochronology international community has defined new standards for the determination of U‐(Th‐)Pb ages. A new workflow defines the appropriate propagation of uncertainties for these data, identifying random and systematic components. Only data with uncertainties relating to random error should be used in weighted mean calculations of population ages; uncertainty components for systematic errors are propagated after this stage, preventing their erroneous reduction. Following this improved uncertainty propagation protocol, data can be compared at different uncertainty levels to better resolve age differences. New reference values for commonly used zircon, monazite and titanite reference materials are defined (based on ID‐TIMS) after removing corrections for common lead and the effects of excess 230Th. These values more accurately reflect the material sampled during the determination of calibration factors by LA‐ICP‐MS analysis. Recommendations are made to graphically represent data only with uncertainty ellipses at 2s and to submit or cite validation data with sample data when submitting data for publication. New data‐reporting standards are defined to help improve the peer‐review process. With these improvements, LA‐ICP‐MS U‐(Th‐)Pb data can be considered more robust, accurate, better documented and quantified, directly contributing to their improved scientific interpretation.  相似文献   
28.
A two-dimensional time-dependent Earth-atmosphere model is developed which can be applied to the study of a class of atmospheric boundary-layer flows which owe their origin to horizontal inhomogeneities with respect to surface roughness and temperature. Our main application of the model is to explore the governing physical mechanisms of nocturnal urban atmospheric boundarylayer flow.A case study is presented in which a stable temperature stratification is assumed to exist in the rural upwind area. It is shown through integration of the numerical model that as this air passes over a city, the heat is redistributed due to increased surface friction (and hence increased turbulent mixing). This redistribution of heat results in the formation of an urban heat island.Additional numerical integrations of the model are conducted to examine the dependence of induced perturbations on: (1) the upwind temperature inversion; (2) the geostrophic wind speed; and (3) urbanization. The results show a linear relationship between heat-island intensity and the rural temperature inversion with the heat island increasing in intensity as the upwind inversion becomes stronger; that the heat-island intensity close to the surface is inversely proportional to the geostrophic wind; and that the effects of anthropogenic heat cause an increase in the perturbation temperature with the perturbation extending to higher altitudes. From this study, we conclude that with an upwind temperature inversion, a city of any size should generate a heat island as a result of increased surface roughness. The heat-island intensity should increase with city size because of two factors: larger cities are usually aerodynamically rougher; and larger cities have a larger anthropogenic heat output.Research supported in part by NSF Grant GA-16822.  相似文献   
29.
Strontium and oxygen isotope measurements on the alkali basalt-trachyte-phonolite suite of St. Helena show that some of the late-fractionated rocks are enriched in 87Sr and depleted in 18O relative to the older basalts. The data rule out both the formation of the late-fractionated rocks by the partial melting of hydrothermally altered oceanic crust and the contamination of the volcanic rocks by oceanic sediment. It also appears to be incompatible with models based either on the melting of previously fractionated and crystallized liquids in the volcanic pile, or the long-term fractionation of lavas over several millions of years in a sub-volcanic magma chamber.It is concluded that hydrothermal interaction with meteoric water is the most important cause of the 18O depletion. If the interaction occurred at widely differing temperatures, and involved meteoric and seawaters, it might conceivably have caused both the oxygen and strontium isotope heterogeneities.  相似文献   
30.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号