首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   181篇
  免费   13篇
  国内免费   3篇
测绘学   3篇
大气科学   25篇
地球物理   47篇
地质学   39篇
海洋学   19篇
天文学   18篇
综合类   3篇
自然地理   43篇
  2023年   3篇
  2021年   1篇
  2020年   3篇
  2019年   5篇
  2018年   5篇
  2017年   6篇
  2016年   14篇
  2015年   4篇
  2014年   4篇
  2013年   20篇
  2012年   4篇
  2011年   6篇
  2010年   10篇
  2009年   7篇
  2008年   8篇
  2007年   6篇
  2006年   4篇
  2005年   4篇
  2003年   5篇
  2002年   2篇
  2001年   10篇
  2000年   4篇
  1999年   5篇
  1998年   5篇
  1997年   4篇
  1996年   4篇
  1995年   3篇
  1994年   3篇
  1992年   3篇
  1991年   3篇
  1990年   1篇
  1989年   1篇
  1987年   2篇
  1985年   2篇
  1984年   2篇
  1983年   1篇
  1982年   2篇
  1981年   3篇
  1980年   4篇
  1979年   1篇
  1978年   3篇
  1977年   2篇
  1976年   2篇
  1975年   1篇
  1973年   1篇
  1971年   1篇
  1968年   1篇
  1967年   1篇
  1964年   1篇
排序方式: 共有197条查询结果,搜索用时 15 毫秒
31.
Groundwater in front of warm‐based glaciers is likely to become a more integrated part of the future proglacial hydrological system at high latitudes due to global warming. Here, we present the first monitoring results of shallow groundwater chemistry and geochemical fingerprinting of glacier meltwater in front of a warm‐based glacier in Southeast Greenland (Mittivakkat Gletscher, 65° 41′ N, 37° 48′ W). The groundwater temperature, electrical conductivity and pressure head were monitored from August 2009 to August 2011, and water samples were collected in 2009 and analyzed for major ions and water isotopes (δD, δ18O). The 2 yrs of monitoring revealed that major outbursts of glacier water during the ablation season flushed the proglacial aquifer and determined the groundwater quality for the next 2–8 weeks until stable chemical conditions were reached again. Water isotope composition shows that isotopic fractionation occurs in both groundwater and glacier meltwater, but fractionation due to evaporation from near‐surface soil moisture prior to infiltration has the most significant effect. This study shows that groundwater in Low Arctic Greenland is likely to possess a combined geochemical and isotopic composition, which is distinguishable from other water sources in the proglacial environment. However, the shallow groundwater composition at a given time is highly dependent on major outbursts of glacier water in the previous months.  相似文献   
32.
The Large Observatory For X-ray Timing (LOFT), currently in an assessment phase in the framework the ESA M3 Cosmic Vision programme, is an innovative medium-class mission specifically designed to answer fundamental questions about the behaviour of matter, in the very strong gravitational and magnetic fields around compact objects and in supranuclear density conditions. Having an effective area of ~10 m2 at 8 keV, LOFT will be able to measure with high sensitivity very fast variability in the X-ray fluxes and spectra. A good knowledge of the in-orbit background environment is essential to assess the scientific performance of the mission and optimize the design of its main instrument, the Large Area Detector (LAD). In this paper the results of an extensive Geant-4 simulation of the instrumentwillbe discussed, showing the main contributions to the background and the design solutions for its reduction and control. Our results show that the current LOFT/LAD design is expected to meet its scientific requirement of a background rate equivalent to 10 mCrab in 2?30 keV, achieving about 5 mCrab in the most important 2–10 keV energy band. Moreover, simulations show an anticipated modulation of the background rate as small as 10 % over the orbital timescale. The intrinsic photonic origin of the largest background component also allows for an efficient modelling, supported by an in-flight active monitoring, allowing to predict systematic residuals significantly better than the requirement of 1 %, and actually meeting the 0.25 % science goal.  相似文献   
33.
The Greenland ice sheet through the last glacial-interglacial cycle   总被引:1,自引:0,他引:1  
The evolution of the Greenland ice sheet during the last 150,000 years, in response to a climate history derived from a Greenland ice-margin oxygen-18 record, is simulated by means of a three-dimensional, time-dependent ice-sheet model. The calculations indicate that the ice sheet displayed considerable thinning and ice-margin retreat during the last interglacial (the Eemian) and during a warm interstadial c. 100,000 yr B.P., resulting in a splitting up of the ice sheet into a central-northern and a southern part. However, the ice sheet in Central Greenland survived the warm stages with almost unchanged surface elevations as compared with the present.  相似文献   
34.
Wide field monitoring is of particular interest in X-ray astronomy due to the strong time-variability of most X-ray sources. Not only does the time-profiles of the persistent sources contain characteristic signatures of the underlying physical systems, but, additionally, some of the most intriguing sources have long periods of quiesense in which they are almost undetectable as X-ray sources, interspersed with relatively brief periods of intense outbursts, where we have unique opportunities of studying dynamical effects, in, for instance, the evolution of accretion discs. Another question for which wide field monitors may provide key information, is the origin and nature of the cosmic gamma ray bursts.Rotation Modulation Collimators (RMC's) were originally introduced in X-ray astronomy to provide accurate source localizations over extended fields. This role has since been taken over by the grazing incidence telescope systems. The potential of the RMC's as wide field monitors have recently been demonstrated by the WATCH instruments on GRANAT and EURECA. It now appears likely, that for use on large, 3-axis stabilized spacecraft, a pinhole camera system may provide better sensitivity than an RMC-system of corresponding physical dimensions. But due to its simplicity, low data rate, and ability to work on spin stabilized (micro)satellites, the RMC wide field monitor may still have a role to play in the X-ray astronomy of the future.  相似文献   
35.
Heat flow and lithospheric thermal regime in the Northeast German Basin   总被引:3,自引:0,他引:3  
New values of surface heat flow are reported for 13 deep borehole locations in the Northeast German Basin (NEGB) ranging from 68 to 91 mW m− 2 with a mean of 77 ± 3 mW m− 2. The values are derived from continuous temperature logs, measured thermal conductivity, and log-derived radiogenic heat production. The heat-flow values are supposed free of effects from surface palaeoclimatic temperature variations, from regional as well as local fluid flow and from thermal refraction in the vicinity of salt structures and thus represent unperturbed crustal heat flow. Two-D numerical lithospheric thermal models are developed for a 500 km section along the DEKORP-BASIN 9601 deep seismic line across the basin with a north-eastward extension across the Tornquist Zone. A detailed conceptual model of crustal structure and composition, thermal conductivity, and heat production distribution is developed. Different boundary conditions for the thickness of thermal lithosphere were used to fit surface heat flow. The best fit is achieved with a thickness of thermal lithosphere of about 75 km beneath the NEGB. This estimate is corroborated by seismological studies and somewhat less than typical for stabilized Phanerozoic lithosphere. Modelled Moho temperatures in the basin are about 800 °C; heat flow from the mantle is about 35 to 40 mW m− 2. In the southernmost part of the section, beneath the Harz Mountains, higher Moho temperatures up to 900 to 1000 °C are shown. While the relatively high level of surface heat flow in the NEGB obviously is of longer wave length and related to lithosphere thickness, changes in crustal structure and composition are responsible for short-wave-length anomalies.  相似文献   
36.
Concentrations and rates of uptake of dissolved organic nitrogen (DON, free amino acids, and urea) and inorganic nitrogen (DIN, nitrate, and ammonium) were measured along two transects in the Gulf of Riga, a sub-basin of the Baltic Sea, during May and July 1996. Concentrations of total dissolved nitrogen (TDN) were 23±3 μg-at N 1−1 in the northern region (mouth) and 41±5 μg-at N 1−1 in the southern region (head) of the Gulf. Rates of nitrogen uptake, determined with15N-labeled substrates, reflected differences in TDN concentration between the regions. In May, uptake of DIN+DON measured 0.17 and 0.43 μg-at N 1−1 h−1 in the northern and southern parts of the Gulf, respectively. In July, DIN+DON uptake measured 0.38 and 0.68 μg-at N 1−1 h−1 in the north and south, respectively. Most of the variability in total nitrogen flux between the northern and southern regions was due to heterogeneity of DON utilization. Uptake of urea and dissolved free amino acid were up to 6 and 3 times greater in the south compared to the north. As evidenced by size-fractionation, plankton size structure appeared to play a role in the uptake of DON. The community in the southern part was largely composed of cells <5 μm, while up to 67% of the community in the northern part was composed of cells >5 μm. Our results indicate that DON was a major source of nitrogen to phytoplankton, particularly in the southern part of the Gulf.  相似文献   
37.
It is shown that compact designs of multifocus, conical approximations to highly nested Wolter I telescopes, as well as single reflection concentrators, employing realistic graded period W/Si or Ni/C multilayer coatings, allow one to obtain more than 1000 cm2 of on-axis effective area at 40 keV and up to 200 cm2 at 100 keV. The degree of concentration is defined by a focusing factor i.e., the effective area divided by the half power focal area. For the cases studied, this is 400 at 40 keV and 200 at 100 keV for a 2 arcmin imaging resolution. This result is quite insensitive to the specifics of the telescope configuration provided that mirrors can be coated to an inner radius of 3 cm. Specifically we find that a change of focal length from 5 to 12 m affects the effective area by less than 10%. In addition the result is insensitive to the thickness of the individual mirror shell provided that it is smaller than roughly 1 mm. The design can be realized with foils as thin (0.4 mm) as used for ASCA and SODART or with closed, slightly thicker (1.0 mm) mirror shells as used for JET-X and XMM. The effect of an increase of the inner radius is quantified on the effective area for multilayered mirrors up to 9 cm. The calculated Field of View (full width at half maximum), ranges from 9 arcmin at 1 keV to 5 arcmin at 60 keV. Finally, the continuum sensitivity of the design assuming a signal to noise ratio of 5 and a 10% energy bandwidth has been calculated. For a balloon flight observation of 104 sec. with a telescope having 2 arcmin imaging resolution the point source sensitivity is 3 · 10–6 photons/cm2/s/keV up to 70 keV for a W/Si coated telescope and up to 100 keV for a Ni/C coated telescope. For a satellite observation time of 105 sec and an imaging resolution of 1 arcmin the sensitivity is 10–7 photons/cm2/s/keV which demonstrates the great potential of this hard X-ray imaging telescope in the energy range up to 100 keV.  相似文献   
38.
39.
40.
Flood irrigation is globally one of the most used irrigation methods. Typically, not all water that is applied during flood irrigation is consumed by plants or lost to evaporation. Return flow, the portion of applied water from flood irrigation that returns back to streams either via surface or subsurface flow, can constitute a large part of the water balance. Few studies have addressed the connection between vertical and lateral subsurface flows and its potential role in determining return flow pathways due to the difficulty in observing and quantifying these processes at plot or field scale. We employed a novel approach, combining induced polarization, time‐lapse electrical resistivity tomography, and time‐lapse borehole nuclear magnetic resonance, to identify flow paths and quantify changes in soil hydrological conditions under nonuniform application of flood irrigation water. We developed and tested a new method to track the wetting front in the subsurface using the full range of inverted resistivity values. Antecedent soil moisture conditions did not play an important role in preferential flow path activation. More importantly, boundaries between lithological zones in the soil profile were observed to control preferential flow pathways with subsurface run‐off occurring at these boundaries when saturation occurred. Using the new method to analyse time‐lapse resistivity measurements, we were able to track the wetting front and identify subsurface flow paths. Both uniform infiltration and preferential lateral flows were observed. Combining three geophysical methods, we documented the influence of lithology on subsurface flow processes. This study highlights the importance of characterizing the subsurface when the objective is to identify and quantify subsurface return flow pathways under flood irrigation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号