首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   128篇
  免费   4篇
  国内免费   1篇
测绘学   27篇
大气科学   11篇
地球物理   26篇
地质学   51篇
海洋学   1篇
天文学   6篇
自然地理   11篇
  2023年   2篇
  2022年   3篇
  2021年   6篇
  2020年   1篇
  2019年   4篇
  2018年   7篇
  2017年   6篇
  2016年   9篇
  2015年   6篇
  2014年   11篇
  2013年   9篇
  2012年   6篇
  2011年   8篇
  2010年   3篇
  2009年   12篇
  2008年   7篇
  2007年   3篇
  2006年   7篇
  2005年   3篇
  2004年   3篇
  2003年   4篇
  2002年   2篇
  2001年   1篇
  2000年   2篇
  1999年   1篇
  1997年   1篇
  1996年   2篇
  1994年   1篇
  1992年   2篇
  1989年   1篇
排序方式: 共有133条查询结果,搜索用时 0 毫秒
1.
In recent years a number of double-humped supernovae (SNe) have been discovered. This is a feature predicted by the dual-shock Quark-Nova (QN) model where an SN explosion is followed (a few days to a few weeks later) by a QN explo- sion. SN 2009ip and SN 2010mc are the best observed examples of double-humped SNe. Here, we show that the dual-shock QN model naturally explains their light curves including the late time emission, which we attribute to the interaction between the mixed SN and QN ejecta and the surrounding circumstellar matter. Our model applies to any star (O-stars, luminous blue variables, Wolf-Rayet stars, etc.) provided that the mass involved in the SN explosion is ~ 20 Mo which provides good conditions for forming a QN.  相似文献   
2.
3.
The ubiquity of movement data has led to new research interest in aspects of temporal scale. Few of the approaches analyzing movement data have been developed specifically for scale-oriented temporal analysis. To overcome this limitation, this article proposes a series-based approach to perform scale-oriented temporal analysis of movement data. Key to the proposed approach is the construction of four types of series (one type of identical-scale series and three types of cross-scale series) based on the continuous triangular model (CTM). Two distinct research goals are derived from this: to investigate the changes in motion attributes of moving individuals across different temporal scales, and to detect the time intervals during which active events might have occurred. The results based on real football movement data show that finer changes in motion attributes can be found and more accurate time intervals can be detected through the proposed approach.  相似文献   
4.
Satellite gravity missions, such as CHAMP, GRACE and GOCE, and airborne gravity campaigns in areas without ground gravity will enhance the present knowledge of the Earths gravity field. Combining the new gravity information with the existing marine and ground gravity anomalies is a major task for which the mathematical tools have to be developed. In one way or another they will be based on the spectral information available for gravity data and noise. The integration of the additional gravity information from satellite and airborne campaigns with existing data has not been studied in sufficient detail and a number of open questions remain. A strategy for the combination of satellite, airborne and ground measurements is presented. It is based on ideas independently introduced by Sjöberg and Wenzel in the early 1980s and has been modified by using a quasi-deterministic approach for the determination of the weighting functions. In addition, the original approach of Sjöberg and Wenzel is extended to more than two measurement types, combining the Meissl scheme with the least-squares spectral combination. Satellite (or geopotential) harmonics, ground gravity anomalies and airborne gravity disturbances are used as measurement types, but other combinations are possible. Different error characteristics and measurement-type combinations and their impact on the final solution are studied. Using simulated data, the results show a geoid accuracy in the centimeter range for a local test area.  相似文献   
5.
The goal of this contribution is to focus on improving the quality of gravity field models in the form of spherical harmonic representation via alternative configuration scenarios applied in future gravimetric satellite missions. We performed full-scale simulations of various mission scenarios within the frame work of the German joint research project “Concepts for future gravity field satellite missions” as part of the Geotechnologies Program, funded by the German Federal Ministry of Education and Research and the German Research Foundation. In contrast to most previous simulation studies including our own previous work, we extended the simulated time span from one to three consecutive months to improve the robustness of the assessed performance. New is that we performed simulations for seven dedicated satellite configurations in addition to the GRACE scenario, serving as a reference baseline. These scenarios include a “GRACE Follow-on” mission (with some modifications to the currently implemented GRACE-FO mission), and an in-line “Bender” mission, in addition to five mission scenarios that include additional cross-track and radial information. Our results clearly confirm the benefit of radial and cross-track measurement information compared to the GRACE along-track observable: the gravity fields recovered from the related alternative mission scenarios are superior in terms of error level and error isotropy. In fact, one of our main findings is that although the noise levels achievable with the particular configurations do vary between the simulated months, their order of performance remains the same. Our findings show also that the advanced pendulums provide the best performance of the investigated single formations, however an accuracy reduced by about 2–4 times in the important long-wavelength part of the spectrum (for spherical harmonic degrees ${<}50$ ), compared to the Bender mission, can be observed. Concerning state-of-the-art mission constraints, in particular the severe restriction of heterodyne lasers on maximum range-rates, only the moderate Pendulum and the Bender-mission are beneficial options, of course in addition to GRACE and GRACE-FO. Furthermore, a Bender-type constellation would result in the most accurate gravity field solution by a factor of about 12 at long wavelengths (up to degree/order 40) and by a factor of about 200 at short wavelengths (up to degree/order 120) compared to the present GRACE solution. Finally, we suggest the Pendulum and the Bender missions as candidate mission configurations depending on the available budget and technological progress.  相似文献   
6.
Representing the spherical harmonic spectrum of a field on the sphere in terms of its amplitude and phase is termed as its polar form. In this study, we look at how the amplitude and phase are affected by linear low-pass filtering. The impact of filtering on amplitude is well understood, but that on phase has not been studied previously. Here, we demonstrate that a certain class of filters only affect the amplitude of the spherical harmonic spectrum and not the phase, but the others affect both the amplitude and phase. Further, we also demonstrate that the filtered phase helps in ascertaining the efficacy of decorrelation filters used in the grace community.  相似文献   
7.
Methodology and use of tensor invariants for satellite gravity gradiometry   总被引:1,自引:1,他引:1  
Although its use is widespread in several other scientific disciplines, the theory of tensor invariants is only marginally adopted in gravity field modeling. We aim to close this gap by developing and applying the invariants approach for geopotential recovery. Gravitational tensor invariants are deduced from products of second-order derivatives of the gravitational potential. The benefit of the method presented arises from its independence of the gradiometer instrument’s orientation in space. Thus, we refrain from the classical methods for satellite gravity gradiometry analysis, i.e., in terms of individual gravity gradients, in favor of the alternative invariants approach. The invariants approach requires a tailored processing strategy. Firstly, the non-linear functionals with regard to the potential series expansion in spherical harmonics necessitates the linearization and iterative solution of the resulting least-squares problem. From the computational point of view, efficient linearization by means of perturbation theory has been adopted. It only requires the computation of reference gravity gradients. Secondly, the deduced pseudo-observations are composed of all the gravitational tensor elements, all of which require a comparable level of accuracy. Additionally, implementation of the invariants method for large data sets is a challenging task. We show the fundamentals of tensor invariants theory adapted to satellite gradiometry. With regard to the GOCE (Gravity field and steady-state Ocean Circulation Explorer) satellite gradiometry mission, we demonstrate that the iterative parameter estimation process converges within only two iterations. Additionally, for the GOCE configuration, we show the invariants approach to be insensitive to the synthesis of unobserved gravity gradients.  相似文献   
8.
Bistatic synthetic aperture radar (SAR) is an extension of traditional monostatic SAR, which increases the flexibility in designing SAR missions. We describe a scheme for the computation of integration time and azimuth coverage of bistatic SARs based on space-time diagrams. A classification of bistatic SAR configurations is introduced in terms of size and velocity on the ground of antenna footprints. Bistatic SAR regimes are also identified.  相似文献   
9.
In light of the many improvements within 3D urban modeling and Location‐Based Services, this article provides a timely review of the state‐of‐the‐art on integrating indoor and outdoor spaces in pedestrian navigation guidance aids. With people moving seamlessly between buildings and surrounding areas, navigation guidance tools should extend from merely outdoor or indoor guidance, to provide support in the combined indoor‐outdoor context. This article first examines the challenges and complexities of integrating indoor and outdoor spaces into a single navigation system. Next, by using objective selection criteria, 36 relevant studies were withheld and further reviewed on their specific developments in data model requirements, and algorithmic and context support for integrated IO navigation systems. This review shows that the challenges of dealing with both indoor and outdoor space structures, while taking into account pedestrian's freer use of space, currently complicate the proposition of a unified IO space concept for navigation. However, there are some ongoing developments (e.g. context definitions, algorithmic extensions, increased data availability, growing awareness of pedestrians’ perception during wayfinding) that will help to bring outdoor and indoor spaces closer together in the realm of combined geospatial analysis.  相似文献   
10.
Global spherical harmonic computation by two-dimensional Fourier methods   总被引:2,自引:2,他引:2  
A method is presented for performing global spherical harmonic computation by two-dimensional Fourier transformations. The method goes back to old literature (Schuster 1902) and tackles the problem of non-orthogonality of Legendre-functions, when discretized on an equi-angular grid. Both analysis and synthesis relations are presented, which link the spherical harmonic spectrum to a two-dimensional Fourier spectrum. As an alternative, certain functions of co-latitude are introduced, which are orthogonal to discretized Legendre functions. Several independent Fourier approaches for spherical harmonic computation fit into our general scheme.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号