首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   577篇
  免费   28篇
  国内免费   10篇
测绘学   26篇
大气科学   46篇
地球物理   148篇
地质学   218篇
海洋学   54篇
天文学   56篇
综合类   2篇
自然地理   65篇
  2024年   2篇
  2021年   17篇
  2020年   16篇
  2019年   20篇
  2018年   23篇
  2017年   24篇
  2016年   23篇
  2015年   25篇
  2014年   33篇
  2013年   53篇
  2012年   31篇
  2011年   27篇
  2010年   24篇
  2009年   32篇
  2008年   26篇
  2007年   24篇
  2006年   20篇
  2005年   22篇
  2004年   13篇
  2003年   11篇
  2002年   13篇
  2001年   13篇
  2000年   11篇
  1999年   9篇
  1998年   8篇
  1997年   6篇
  1996年   6篇
  1995年   6篇
  1994年   5篇
  1993年   5篇
  1992年   3篇
  1991年   8篇
  1990年   5篇
  1989年   6篇
  1987年   1篇
  1986年   4篇
  1985年   6篇
  1984年   5篇
  1983年   4篇
  1982年   2篇
  1981年   3篇
  1980年   4篇
  1978年   1篇
  1977年   4篇
  1976年   1篇
  1974年   1篇
  1973年   2篇
  1972年   1篇
  1966年   3篇
  1964年   1篇
排序方式: 共有615条查询结果,搜索用时 15 毫秒
51.
This article explores the hypothesis that natural losses of light nonaqueous phase liquids (LNAPLs) through dissolution and evaporation can control the overall extent of LNAPL bodies and LNAPL fluxes observed within LNAPL bodies. First, a proof‐of‐concept sand tank experiment is presented. An LNAPL (methyl tert‐butyl ether) was injected into a sand tank at five constant injection rates that were increased stepwise. Initially, for each injection rate the LNAPL bodies expanded quickly. With time the rate of expansion of the LNAPL bodies slowed and at extended times the extent of the LNAPL became constant. Attainment of a stable LNAPL extent is attributed to rates of LNAPL addition being equal to rates of LNAPL losses through dissolution and evaporation. Secondly, analytical solutions are developed to extrapolate the processes observed in the proof‐of‐concept experiment to dimensions and time frames that are consistent with field‐scale LNAPL bodies. Three LNAPL body geometries that are representative of common field conditions are considered including one‐dimensional, circular, and oblong shapes. Using idealized conditions, the solutions describe volumetric LNAPL fluxes as a function of position in LNAPL bodies and the overall extent of LNAPL bodies as a function of time. Results from both the proof‐of‐concept experiment and the mathematical developments illustrate that natural losses of LNAPL can play an important role in governing LNAPL fluxes within LNAPL bodies and the overall extent of LNAPL bodies.  相似文献   
52.
The Tertiary Tsondab Sandstone Formation, which underlies much of the present Namib Sand Sea, is a key element in understanding the Cenozoic evolution of the Namib Desert. Outcrops of the aeolian facies of the Tsondab Sandstone at Elim and Diep Rivier consist of two sequences of bioturbated cross-strata separated by likely formation-scale surfaces of stabilisation. Cross-strata consist of scalloped sets about 200 m in width and separated by southeast dipping bounding surfaces. Internally, sets contain reactivation surfaces of probable seasonal origin. The north to south-southeast dipping foresets define crescent shapes with a trough axis trending northeast. Although additional data are needed to define the Tsondab bedform, the outcrop data is best satisfied in computer simulations by north trending, east migrating main bedforms, which had relatively large and slow-moving dunes superimposed upon their eastern flanks and migrated to the north. Foresets dipping to the south to south-southwest at Elim suggest that superimposed dunes also occurred on the western flanks of the main bedform and migrated to the south, but that their record was largely lost with net eastward migration of the main bedform. This preliminary Tsondab model shares attributes such as trend, scale of cross-strata, and presence of scalloped sets with reactivation surfaces with computer models of the modern linear dunes in which large-scale sinuosity migrates alongcrest to the north. Differences emerge in the overall set architecture and the orientation of cross-strata and bounding surfaces, as well as the degree of vegetation that must have characterised Tsondab dunes.  相似文献   
53.
54.
55.
A new type of horizontal trap was developed for measuring the aeolian sand transport rate on a flat surface. The trap consists of an adjustable frame that is embedded level with the sand surface, into which a plastic liner is installed and filled with water to capture the blown sand. The water trap has high efficiency and does not disturb the wind field or induce upwind scour. Deployment on Padre Island, Texas, indicated that this portable and adjustable trap catches and retains all the sand blown into it, even under relatively strong wind. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   
56.
NASA’s Meteoroid Environment Office has implemented a program to monitor the Moon for meteoroid impacts from the Marshall Space Flight Center. Using off-the-shelf telescopes and video equipment, the Moon is monitored for as many as 10 nights per month, depending on weather. Custom software automatically detects flashes which are confirmed by a second telescope, photometrically calibrated using background stars, and published on a website for correlation with other observations. Hypervelocity impact tests at the Ames Vertical Gun Range facility have begun to determine the luminous efficiency and ejecta characteristics. The purpose of this research is to define the impact ejecta environment for use by lunar spacecraft designers of the Constellation manned lunar program. The observational techniques and preliminary results will be discussed. The U.S. Government's right to retain a non-exclusive, royalty-free license in and to any copyright is acknowledged.  相似文献   
57.
We present luminosity and surface-brightness distributions of 40 111 galaxies with K -band photometry from the United Kingdom Infrared Telescope (UKIRT) Infrared Deep Sky Survey (UKIDSS) Large Area Survey (LAS), Data Release 3 and optical photometry from Data Release 5 of the Sloan Digital Sky Survey (SDSS). Various features and limitations of the new UKIDSS data are examined, such as a problem affecting Petrosian magnitudes of extended sources. Selection limits in K - and r -band magnitude, K -band surface brightness and K -band radius are included explicitly in the  1/ V max  estimate of the space density and luminosity function. The bivariate brightness distribution in K -band absolute magnitude and surface brightness is presented and found to display a clear luminosity–surface brightness correlation that flattens at high luminosity and broadens at low luminosity, consistent with similar analyses at optical wavelengths. Best-fitting Schechter function parameters for the K -band luminosity function are found to be   M *− 5 log  h =−23.19 ± 0.04, α=−0.81 ± 0.04  and  φ*= (0.0166 ± 0.0008)  h 3 Mpc−3  , although the Schechter function provides a poor fit to the data at high and low luminosity, while the luminosity density in the K band is found to be   j = (6.305 ± 0.067) × 108 L  h  Mpc−3  . However, we caution that there are various known sources of incompleteness and uncertainty in our results. Using mass-to-light ratios determined from the optical colours, we estimate the stellar mass function, finding good agreement with previous results. Possible improvements are discussed that could be implemented when extending this analysis to the full LAS.  相似文献   
58.
59.
60.
Recent work has been concerned with calculating the three-dimensional ion concentrations and Pedersen and Hall conductivities within the auroral region of Jupiter for varying conditions of incident electron precipitation. Using the jovian ionospheric model, we present results that show the auroral ionospheric response to changing the incoming flux of precipitating electrons (for constant initial energy) and also the response to changing the initial energy (for both constant flux and constant energy flux). The results show that, for expected energy fluxes of precipitating particles, the average auroral integrated Pedersen conductivity attains values in excess of 1 mho. In addition, it is shown that electrons with an initial energy of around 60 keV are particularly effective at generating auroral conductivity: Particles of this energy penetrate most effectively to the layer of the jovian ionosphere at which the auroral conductivity is at a maximum.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号