首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   190篇
  免费   8篇
  国内免费   7篇
测绘学   7篇
大气科学   16篇
地球物理   38篇
地质学   65篇
海洋学   23篇
天文学   42篇
综合类   5篇
自然地理   9篇
  2024年   1篇
  2023年   2篇
  2022年   6篇
  2021年   3篇
  2020年   7篇
  2019年   10篇
  2018年   12篇
  2017年   9篇
  2016年   16篇
  2015年   7篇
  2014年   16篇
  2013年   9篇
  2012年   13篇
  2011年   10篇
  2010年   9篇
  2009年   16篇
  2008年   7篇
  2007年   8篇
  2006年   6篇
  2005年   11篇
  2004年   2篇
  2003年   9篇
  2002年   3篇
  2001年   4篇
  2000年   3篇
  1998年   3篇
  1995年   2篇
  1994年   1篇
排序方式: 共有205条查询结果,搜索用时 15 毫秒
51.
Two years of radon-222 observations collected at L’Aquila (Italy) in the atmospheric surface layer during 2004–2006 were analyzed in correlation with meteorological data and other atmospheric tracers. A box model was developed to better understand the mechanisms of diurnal and seasonal variability of the tracer and to indirectly assess the magnitude of the monthly averaged radon soil flux in the L’Aquila measurement site. The model was successfully validated with measurements, with a 0.8 average correlation coefficient between hourly values for the whole period of radon observations. Measurements taken during March 2009 were analyzed to find possible signs of perturbation due to the ongoing seismic activity that would have reached its peak on the 6 April 2009 destructive earthquake. Contrary to the professed (and unpublished) dramatic increases of radon activity unofficially announced to the inhabitants at that time, the study presented here shows that no radon activity increase took place in L’Aquila with respect to a previous ‘seismically unperturbed’ year (same month with similar meteorological conditions), but that an average 30 % decrease was experienced. This conclusion is reached from a direct comparison of observed data and also as a result of the previously validated radon box model constrained by actual meteorological data, from which an indirect estimate of a 17 % reduction of the radon soil flux is obtained.  相似文献   
52.
Bolshaya Imandra, the northern sub-basin of Lake Imandra, was investigated by a hydro-acoustic survey followed by sediment coring down to the acoustic basement. The sediment record was analysed by a combined physical, biogeochemical, sedimentological, granulometrical and micropalaeontological approach to reconstruct the regional climatic and environmental history. Chronological control was obtained by 14C dating, 137Cs, and Hg markers as well as pollen stratigraphy and revealed that the sediment succession offers the first continuous record spanning the Lateglacial and Holocene for this lake. Following the deglaciation prior to c. 13 200 cal. a BP, the lake's sub-basin initially was occupied by a glacifluvial river system, before a proglacial lake with glaciolacustrine sedimentation established. Rather mild climate, a sparse vegetation cover and successive retreat of the Scandinavian Ice Sheet (SIS) from the lake catchment characterized the Bølling/Allerød interstadial, lasting until 12 710 cal. a BP. During the subsequent Younger Dryas chronozone, until 11 550 cal. a BP, climate cooling led to a decrease in vegetation cover and a re-advance of the SIS. The SIS disappeared from the catchment at the Holocene transition, but small glaciers persisted in the mountains at the eastern lake shore. During the Early Holocene, until 8400 cal. a BP, sedimentation changed from glaciolacustrine to lacustrine and rising temperatures caused the spread of thermophilous vegetation. The Middle Holocene, until 3700 cal. a BP, comprises the regional Holocene Thermal Maximum (8000–4600 cal. a BP) with relatively stable temperatures, denser vegetation cover and absence of mountain glaciers. Reoccurrence of mountain glaciers during the Late Holocene, until 30 cal. a BP, presumably results from a slight cooling and increased humidity. Since c. 30 cal. a BP Lake Imandra has been strongly influenced by human impact, originating in industrial and mining activities. Our results are in overall agreement with vegetation and climate reconstructions in the Kola region.  相似文献   
53.
In this paper, we consistently estimate geodetic parameters such as weekly 3-D station coordinates, Earth orientation parameters (EOP) including daily x/y-pole coordinates and the excess length of day \(\Delta \hbox {LOD}\), and selected weekly Earth’s gravitational field (Stokes) coefficients up to degree and order 6 from Satellite Laser Ranging measurements to up to 11 geodetic satellites. The SLR constellation consists of LAGEOS-1/2, Etalon-1/2, Stella, Starlette, Ajisai, Larets, LARES, BLITS and WESTPAC, and its observations cover a time span of 38 years ranging from February 16, 1979, to April 30, 2017. If multiple satellites with various altitudes and orbit inclinations are combined, correlations between estimated parameters are significantly reduced. This allows us (i) to investigate the ability of satellite constellations to reduce existing correlations and (ii) to estimate reliable parameters with higher precision compared to the standard 4-satellite constellation (LAGEOS-1/2, Etalon-1/2) which is currently used by the International Laser Ranging Service for the determination of the Terrestrial Reference Frame (TRF) and EOP products. In particular, the Stokes coefficients, EOP and TRF datum parameters (three translations, three rotations, one scale factor), which are highly correlated with satellite-specific orbit parameters, are improved. From our investigations, we found for an 11-satellite solution compared to the above-mentioned 4-satellite solution a decrease in the scatter of the TRF datum parameters of up to 37%, the transformation residuals are decreased by up to 22%, the scatter of the EOP is decreased by up to 22%, and their mean values are decreased by up to 84% w.r.t. the reference solutions. The largest improvement is obtained for the Stokes coefficients which significantly benefit from a combination of multiple satellites (inclinations and orbit altitudes). In total, single coefficients are improved by up to 93% and the overall improvement is up to 74%. Moreover, it could be clearly identified that Ajisai significantly disturbs the TRF solution due to an erroneous center-of-mass correction. We further quantify the impact of specific satellites on the determination of different geodetic parameters and finally evaluate the potential of the existing SLR-tracked spherical satellite constellation to support the goals of GGOS.  相似文献   
54.
Abstract— Isheyevo is a metal‐rich carbonaceous chondrite that contains several lithologies with different abundances of Fe,Ni metal (7–90 vol%). The metal‐rich lithologies with 50–60 vol% of Fe,Ni metal are dominant. The metal‐rich and metal‐poor lithologies are most similar to the CBb and CH carbonaceous chondrites, respectively, providing a potential link between these chondrite groups. All lithologies experienced shock metamorphism of shock stage S4. All consist of similar components—Fe,Ni metal, chondrules, refractory inclusions (Ca, Al‐rich inclusions [CAIs] and amoeboid olivine aggregates [AOAs]), and heavily hydrated lithic clasts—but show differences in their modal abundances, chondrule sizes, and proportions of porphyritic versus non‐porphyritic chondrules. Bulk chemical and oxygen isotopic compositions are in the range of CH and CB chondrites. Bulk nitrogen isotopic composition is highly enriched in 15N (δ15N = 1122‰). The magnetic fraction is very similar to the bulk sample in terms of both nitrogen release pattern and isotopic profile; the non‐magnetic fraction contains significantly less heavy N. Carbon released at high temperatures shows a relatively heavy isotope signature. Similarly to CBb chondrites, ~20% of Fe,Ni‐metal grains in Isheyevo are chemically zoned. Similarly to CH chondrites, some metal grains are Ni‐rich (>20 wt% Ni). In contrast to CBb and CH chondrites, most metal grains are thermally decomposed into Ni‐rich and Ni‐poor phases. Similar to CH chondrites, chondrules have porphyritic and non‐porphyritic textures and ferromagnesian (type I and II), silica‐rich, and aluminum‐rich bulk compositions. Some of the layered ferromagnesian chondrules are surrounded by ferrous olivine or phyllosilicate rims. Phyllosilicates in chondrule rims are compositionally distinct from those in the hydrated lithic clasts. Similarly to CH chondrites, CAIs are dominated by the hibonite‐, grossite‐, and melilite‐rich types; AOAs are very rare. We infer that Isheyevo is a complex mixture of materials formed by different processes and under different physico‐chemical conditions. Chondrules and refractory inclusions of two populations, metal grains, and heavily hydrated clasts accreted together into the Isheyevo parent asteroid in a region of the protoplanetary disk depleted in fine‐grained dust. Such a scenario is consistent with the presence of solar wind—implanted noble gases in Isheyevo and with its comparatively old K‐Ar age. We cannot exclude that the K‐Ar system was affected by a later collisional event. The cosmic‐ray exposure (CRE) age of Isheyevo determined by cosmogenic 38Ar is ~34 Ma, similar to that of the Bencubbin (CBa) meteorite.  相似文献   
55.
56.
57.
We report the results of laboratory experiments on water heating/cooling, performed in 5 m long water channel with a slope. About 63 series of photos were analyzed: for 3 locations, for 3 bottom slopes (3.7, 6.7 and 12 degrees) and for different Ra numbers. It was pointed out that there exist two types of mixing characterizing different circulations in the presence of slope: gravity current and undersurface jet; the thermal bar is the region where one type of mixing is replaced by another; the highest speed and flowrate are at the break point; the flow is three-dimensional.  相似文献   
58.
59.
Transgressive dune fields often comprise a multiplicity of landforms where vegetation processes largely affect landform dynamics, which in turn, also affect vegetation processes. These associations have seldom been studied in detail. This paper examines four separate landform types in a complex coastal transgressive dunefield located in the central Gulf of Mexico, in order to assess the relationships between dunefield habitat, local environmental factors, vegetation associations and landform evolution. Topographic surveys using tape and clinometer were conducted in conjunction with vegetation survey transects at four locations across the Doña Juana dunefield. Vegetation surveys allowed the estimation of relative plant cover of each plant species found along the transects. A large variety of landforms were found at the Doña Juana Dunefield: deflation plains, gegenwalle (counter) ridges, transverse dune trailing ridges, blowouts and parabolic dunes, aklé (fish‐scale shaped) dunefields and precipitation ridges, with plant species associations developing on these different landforms equally variable. Flood tolerant species were located in the lower parts (deflation plain and gegenwalle ridges) whereas the older and dryer parts were covered by coastal matorral shrubs. Burial‐tolerant species were dominant in the most mobile areas (blowouts and aklé dunefield and margin). The dune trailing ridge, with relatively milder conditions, showed the highest richness, with no dominant species. A dual interaction was found such that colonizing species both create and affect topography, and in turn, topography determines vegetation association and succession patterns. In coastal dunes, the vegetation and abiotic environment (namely the different landforms and the inherent micronevironmental variability) interact tightly and generate a complex and highly dynamic biogeomorphic system where substrate mobility and colonization processes reinforce one another in positive feedback. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   
60.
The stratigraphy of the Taman Peninsula is defined using the sections at Zelensky Hill ?? Panagia, Popov Kamen, Taman and Zheleznyi Rog. The stratigraphy is constructed from distribution of mollusks, foraminifers, nannofossils, diatoms, and organic-walled phytoplankton, as well as incorporating paleomagnetic data. The occurrence of oceanic diatom species in the Middle-Upper Sarmatian, Maeotian and Lower Pontian makes a direct correlation possible between the sections studied, the Mediterranean basin and oceanic zonation. The new data on planktonic and benthic biotic groups suggests a pulsating connection of the Eastern Paratethys with the open marine basins, especially during transitional intervals within constant environments. Comprehensive studies of the Chokrakian-Kimmerian microbiota provide evidence for several levels of marine microbiotic associations that are related to short-term marine invasions. The biotic and paleomagnetic data of the Taman Peninsula sections give a more comprehensive, but sometimes a controversial picture on the Eastern Paratethys history and the nature of its relationship with the adjacent marine basins.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号