首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   192篇
  免费   8篇
  国内免费   11篇
测绘学   7篇
大气科学   16篇
地球物理   38篇
地质学   69篇
海洋学   23篇
天文学   44篇
综合类   5篇
自然地理   9篇
  2024年   1篇
  2023年   2篇
  2022年   6篇
  2021年   7篇
  2020年   7篇
  2019年   10篇
  2018年   12篇
  2017年   9篇
  2016年   16篇
  2015年   7篇
  2014年   16篇
  2013年   9篇
  2012年   13篇
  2011年   10篇
  2010年   9篇
  2009年   17篇
  2008年   8篇
  2007年   8篇
  2006年   6篇
  2005年   11篇
  2004年   2篇
  2003年   9篇
  2002年   3篇
  2001年   4篇
  2000年   3篇
  1998年   3篇
  1995年   2篇
  1994年   1篇
排序方式: 共有211条查询结果,搜索用时 15 毫秒
91.
92.
Variability is one of the most salient features of the earth's climate, yet quantitative policy studies have generally ignored the impact of variability on society's best choice of climate-change policy. This omission is troubling because an adaptive emissions-reduction strategy, one that adjusts abatement rates over time based on observations of damages and abatement costs, should perform much better against extreme uncertainty than static, best-estimate policies. However, climate variability can strongly affect the success of adaptive-abatement strategies by masking adverse trends or fooling society into taking too strong an action. This study compares the performance of a wide variety of adaptive greenhouse-gas-abatement strategies against a broad range of plausible future climate-change scenarios. We find that: i) adaptive strategies remain preferable to static, best-estimate policies even with very large levels of climate variability; ii) the most robust strategies are innovation sensitive, that is, adjust future emissions reduction rates on the basis of small changes in observed abatement costs but only for large changes in observed damages; and iii) information about the size of the variability is about a third to an eighth as valuable as information determining the value of the key parameters that represent the long-term, future climate-change state-of-the-world.  相似文献   
93.
94.
Bacteriohopanepolyols (BHPs) are a diverse group of membrane lipids produced by a wide variety of bacteria and can be used as molecular biomarkers for bacterial processes and populations in both modern and ancient environments. A group of BHPs, including adenosylhopane and structurally related compounds, have been identified as being specific to soils, enabling the transport of terrestrial organic matter (terrOM) to the marine realm to be monitored. Estuary surface sediment samples were obtained from the five Great Russian Arctic Rivers (GRARs; Ob, Yenisey, Lena, Indigirka and Kolyma) and river sediments were obtained from two North American Rivers (Yukon and Mackenzie). Analysis of the BHP signatures, using high performance liquid chromatography–tandem mass spectrometry (HPLC–MSn), indicated the presence of 15 different BHPs originating from a variety of different bacteria, as well as a significant presence of terrestrially derived OM. Total BHP abundance and the contribution of the “soil-marker” BHPs to the total BHP pool increased eastwards among the GRAR sediments. This suggests increasing terrestrial OM or increased preservation of OM as a result of shorter periods of permafrost thawing. The North American rivers showed greatly differing BHP levels between the Yukon and Mackenzie rivers, with a greater BHP input and thus a relatively higher soil OM contribution from the Yukon. The Indigirka River basin in the eastern Siberian Arctic appeared to be the epicentre in the pan-Arctic BHP distribution trend, with the highest “soil-marker” BHPs but the lowest tetrafunctionalised BHPs. Aminobacteriohopanepentol, an indicator of aerobic methane oxidation, was observed in all the sediments, with the source being either the marine environment or methane producing terrestrial environments.  相似文献   
95.
We evaluated benthic habitat quality along a presumed contamination gradient in the Mar del Plata port (Southwestern Atlantic) by coupling biological and chemical proxies in a multidisciplinary approach. Organic matter and photosynthetic pigment contents were higher in silty-clay bottoms of the inner port sites. Levels of all fecal steroids decreased from the inner sites to the port inlet. High concentrations of coprostanol in the inner sites seemed to derive from a permanent population of sea lions rather than from sewage outfalls due to coprostanol/epicoprostanol ratio (IV) values <2.5. PAHs levels were also higher in the inner sector, related to both biomass combustion and petroleum combustion associated to local marine traffic. High disturbance and low ecological status were reflected in low benthic diversity and high AMBI values in the inner sites.  相似文献   
96.
The Tiksheozero carbonatite in northern Russian Karelia is a transitional type between alkaline ultramafic — carbonatitic and alkaline gabbroic suites. The complex is dominated by pyroxenite with a variety of subordinate mafic and ultramafic phases and nepheline syenite. Carbonatite occurs in a main central body and in veins. In this study we have obtained a reliable age for the complex by single grain ID-TIMS U-Pb analyses of zircon and baddeleyite. The age of 1999 ± 5 Ma is important because it places the emplacement of the alkaline complexes in the context of craton-wide extension and break-up events which preceded the initiation of a major Paleoproterozoic orogenic cycle. The Paleoproterozoic age also emphasizes the fact that not all members of the Kola alkaline province are of Paleozoic age.  相似文献   
97.
Although phytoliths constitute part of the wetland suspended load, there are few studies focused on the quantification of them in the biogenic silica (BSi) pool. So, the aim of this paper is both to determine BSi content (diatoms and phytoliths) and its relationship with dissolved silica in surface waters, and the influence of soil and groundwater Si biogeochemistry in Los Padres wetland (Buenos Aires Province, Argentina). In the basin of the Los Padres wetland, dissolved silica (DSi) concentration is near 840 ± 232 μmol/L and 211.83 ± 275.92 μmol/L in groundwaters and surface waters, respectively. BSi represents an 5.6–22.1% of the total suspension material, and 8–34% of the total mineralogical components of the wetland bottom sediments. DSi and BSi vary seasonally, with highest BSi content (diatoms specifically) during the spring–summer in correlation to the lowest DSi concentration. DSi (660–917.5 μmol/L) and phytolith (3.35–5.84%) concentrations in the inflow stream are higher than in the wetland and its outflow stream (19.1–113 μmol/L; 0.45–3.2%, respectively), probably due to the high phytolith content in soils, the high silica concentration in the soil solution, and the groundwater inflow. Diatom content (5–16.8%) in the wetland and its outflow stream is higher than in the inflow stream (0.45–1.97%), controlling DSi in this system. The understanding of the groundwater–surface water interaction in an area is a significant element for determining the different components and the role that they play on the local biogeochemical cycle of Si.  相似文献   
98.
Investigation of complex dynamics of ambient seismic noise remains as an important scientific research challenge. In this work we investigated dynamical features of the ambient noises at Oni seismic station, Georgia. We used stochastic model reconstruction method from measured data sets. Seismic records for different time periods around Oni seismic station have been analysed. It was shown that the dynamics of fluctuations of seismic noise vertical component undergoes essential changes for considered time period from 2005 to 2012. These changes are more noticeable for time periods of preparation and aftershock activity of strong M6.0 earthquake occurred in 2009 in the vicinity of Oni seismic station.  相似文献   
99.
Genesis and emplacement of Vredefort Granophyre, the impact melt rock exposed on the Vredefort Dome, the erosional remnant of the central uplift of the Vredefort impact structure, South Africa, have long been debated. This debate was recently reinvigorated by the discovery that besides the previously known felsic variety of >66 wt% SiO2, a second, somewhat more mafic phase of <66 wt% SiO2 occurs along a Granophyre dike on farms Kopjeskraal and Eldorado in the northwest sector of the dome. Two hypotheses have been put forward to explain the genesis and emplacement of this second phase: (1) successive injections of impact melt into extensional fractures opened in the course of central uplift formation/crater modification, with melts of distinct compositions derived from a differentiating impact melt body in the crater, and (2) generation of the more mafic phase as a product of admixture/assimilation of a mafic country rock component, either the so-called epidiorite of possible Ventersdorp Supergroup affiliation or the Dominion Group meta-lava (DGL), to Felsic Granophyre. In the latter model, contamination with mafic country rock would have occurred during downward intrusion and stoping into and below the crater floor. The so-called Mafic Granophyre has previously only ever been sampled on a single site (Farm Kopjeskraal). In this study, samples of Granophyre occurring along the southerly extension of this dike on farm Rensburgdrif, and from a second dike on the Rietkuil property further southwest were investigated by field work, and petrographic, geochemical, and isotopic analysis. The mafic phase indeed occurs in the interior of the dike at Rensburgdrif, and also on Rietkuil. New geochemical and Sr-Nd isotope data support the hypothesis that the Mafic Granophyre composition represents a mixture between Felsic Granophyre and a mafic country rock. A 20% admixture of epidiorite or DGL to Felsic Granophyre provides an excellent match for the chemical composition of the Mafic Granophyre. The Sr-Nd isotope data indicate that this admixture likely involved the epidiorite component rather than DGL. Together with earlier Sr-Nd-Os-Se isotopic data, and other geochemical data, these results further support formation of the Mafic Granophyre by local assimilation/admixture of epidiorite to Felsic Granophyre.  相似文献   
100.
Abstract– Shock recovery experiments were performed with an explosive set‐up in which three types of microorganisms embedded in various types of host rocks were exposed to strong shock waves with pressure pulse lengths of lower than 0.5 μs: spores of the bacterium Bacillus subtilis, Xanthoria elegans lichens, and cells of the cyanobacterium Chroococcidiopsis sp. 029. In these experiments, three fundamental parameters were systematically varied (1) shock pressures ranging from 5 to 50 GPa, (2) preshock ambient temperature of 293, 233 and 193 K, and (3) the type of host rock, including nonporous igneous rocks (gabbro and dunite as analogs for the Martian shergottites and chassignites, respectively), porous sandstone, rock salt (halite), and a clay‐rich mineral mixture as porous analogs for dry and water‐saturated Martian regolith. The results show that the three parameters have a strong influence on the survival rates of the microorganisms. The most favorable conditions for the impact ejection from Mars for microorganisms would be (1) low porosity host rocks, (2) pressures <10–20 GPa, and (3) low ambient temperature of target rocks during impact. All tested microorganisms were capable of surviving to a certain extent impact ejection in different geological materials under distinct conditions.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号