首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   57117篇
  免费   761篇
  国内免费   534篇
测绘学   1669篇
大气科学   3972篇
地球物理   10802篇
地质学   20898篇
海洋学   5070篇
天文学   13276篇
综合类   238篇
自然地理   2487篇
  2022年   429篇
  2021年   687篇
  2020年   758篇
  2019年   842篇
  2018年   1728篇
  2017年   1655篇
  2016年   1972篇
  2015年   1038篇
  2014年   1849篇
  2013年   3102篇
  2012年   1970篇
  2011年   2477篇
  2010年   2162篇
  2009年   2687篇
  2008年   2315篇
  2007年   2383篇
  2006年   2278篇
  2005年   1577篇
  2004年   1480篇
  2003年   1421篇
  2002年   1422篇
  2001年   1270篇
  2000年   1225篇
  1999年   1046篇
  1998年   1024篇
  1997年   1016篇
  1996年   902篇
  1995年   829篇
  1994年   821篇
  1993年   673篇
  1992年   639篇
  1991年   633篇
  1990年   683篇
  1989年   573篇
  1988年   550篇
  1987年   657篇
  1986年   533篇
  1985年   719篇
  1984年   718篇
  1983年   683篇
  1982年   681篇
  1981年   537篇
  1980年   572篇
  1979年   480篇
  1978年   486篇
  1977年   440篇
  1976年   404篇
  1975年   409篇
  1974年   430篇
  1973年   453篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
991.
Structural analyses in the well-exposed Hilti mantle section in the Oman ophiolite suggest a model of forceful horizontal flow in the uppermost mantle at the edge of a diapir below a oceanic spreading center. Detailed structural mapping, focussed on high-T deformation (i.e., asthenospheric flow), revealed a gently undulated flat structure with a uniform east-west flow direction. When it is related to the N–S to NNW–SSE trending, vertical sheeted dike complex located to the east, this mantle flow is parallel to the spreading direction. Because the Moho is so flat lying, a large dunite occurrence at the south-western region is possibly ascribed to the Moho Transition Zone. Kinematic analysis shows that the shear direction generally changes from top-to-the west in the upper level, to top-to-the east in the lower level with respect to the Moho. This shear sense inversion is explained by a model of forceful flow due to an active mantle uprise and it is not compatible with a passive mantle uprise. In the plan section, the boundary of the shear sense inversion is subparallel to the flow direction and subperpendicular to the spreading axis. In cross section, the boundary appears to occur at various depths in the range of 200 m to 500 m. It shows that the active mantle uprise in the diapir center resulted in a channelled horizontal flow.  相似文献   
992.
McIntosh  K.  Akbar  F.  Calderon  C.  Stoffa  P.  Operto  S.  Christeson  G.  Nakamura  Y.  Shipley  T.  Flueh  E.  Stavenhagen  A.  Leandro  G. 《Marine Geophysical Researches》2000,21(5):451-474
In March and April 1995 a cooperative German, Costa Rican, and United States research team recorded onshore-offshore seismic data sets along the Pacific margin of Costa Rica using the R/V Ewing. Off the Nicoya Peninsula we used a linear array of ocean bottom seismometers and hydrophones (OBS/H) with onshore seismometers extending across much of the isthmus. In the central area we deployed an OBS/H areal array consisting of 30 instruments over a 9 km by 35-km area and had land stations on the Nicoya Peninsula adjacent to this marine array and also extending northeast on the main Costa Rican landmass. Our goal in these experiments was to determine the crustal velocity structure along different portions of this convergent margin and to use the dense instrument deployments to create migrated reflection images of the plate boundary zone and the subducting Cocos Plate. Our specific goal in the central area was to determine whether a subducted seamount is present at the location of the 1990, M 7 earthquake off the Nicoya Peninsula and can thus be linked to its nucleation. Subsequently we have processed the data to improve reflection signals, used the data to calculate crustal velocity models, and developed several wide-aperture migration techniques, based on a Kirchhoff algorithm, to produce reflection images. Along the northern transect we used the ocean bottom data to construct a detailed crustal velocity model, but reflections from the plate boundary and top and bottom of the subducting Cocos plate are difficult to identify and have so far produced poor images. In contrast, the land stations along this same transect recorded clear reflections from the top of the subducting plate or plate boundary, within the seismogenic zone, and we have constructed a clear image from this reflector beneath the Nicoya shelf. Data from the 3-D seismic experiment suffer from high-amplitude, coherent noise (arrivals other than reflections), and we have tried many techniques to enhance the signal to noise ratio of reflected arrivals. Due to the noise, an apparent lack of strong reflections from the plate boundary zone, and probable structural complexity, the resulting 3-D images only poorly resolve the top of the subducting Cocos Plate. The images are not able to provide compelling evidence of whether there is a subducting seamount at the 1990 earthquake hypocenter. Our results do show that OBS surveys are capable of creating images of the plate boundary zone and the subducting plate well into the seismogenic zone if coherent reflections are recorded at 1.8 km instrument spacing (2-D) and 5 km inline by 1 km crossline spacing for 3-D acquisition. However, due to typical high amplitude coherent noise, imaging results may be poorer than expected, especially in unfavorable geologic settings such as our 3-D survey area. More effective noise reduction in acquisition, possibly with the use of vertical hydrophone arrays, and in processing, with advanced multiple removal and possibly depth filtering, is required to achieve the desired detailed images of the seismogenic plate boundary zone.  相似文献   
993.
Mytilus edulis digestive gland microsomes were prepared from indigenous populations sampled from a clean reference site (Port Quin) and an urban-industrial contaminated site (Blackpool) in the UK. Samples were collected in March/April, May, August and December 1998. Western blot analysis was performed using polyclonal antibodies to fish CYP1A and rat CYP2E using partially purified M. edulis CYP as a positive control, to aid identification. CYP1A- and CYP2E-immunopositive protein levels showed different site-specific seasonal variation with higher levels of CYP2E determined in May (P < 0.05). At both sites, lower levels of CYP1A-immunopositive protein but not CYP2E-immunopositive protein were observed in the samples collected in December (P < 0.05). This correlated with lower levels of nuclear DNA damage (Comet assay expressed as per cent tail DNA) observed in December compared to August (P < 0.05).  相似文献   
994.
Circulation     
Low-frequency current and temperature variability on the southeast US continental shelf during summer conditions of weak wind forcing and vertical stratification was found to be similar in many aspects to previous findings for winter, when stronger wind forcing and vertical homogeneity prevails. Subtidal variability in the outer shelf is dominated by the weekly occurrence of Gulf Stream frontal eddies and meanders. These baroclinic events strongly affect the balance of momentum in the outer shelf, but not at mid-shelf. A negative alongshore sea level slope of order −10−7 is required to balance mean along-shelf momentum at the shelf edge, similar to oceanic estimates, and can contribute to the observed northward mean flow over the shelf.Low-frequency flow at mid-shelf and coastal sea level fluctuations appear to occur as a forced wave response to local alongshore wind stress events that are coherent over the shelf domain. Momentum balances indicate a trapped wave response similar to the arrested topographic wave found in the mid-Atlantic Bight (CSANADY, 1978). Density driven currents from river discharge do not appear to be significant at mid-shelf. Cold, subsurface intrusions of deeper, nutrient rich Gulf Stream waters can occasionally penetrate to mid- and inner-shelf regions north of Cape Canaveral, causing strong phytoplankton and zooplankton responses. These events were observed following the simultaneous occurrence of upwellings from northward winds and Gulf Stream frontal eddies at the shelf break during periods when the Stream was in an onshore position. Subsurface Gulf Stream intrusions to mid-shelf occur only during the summer, when the shelf is vertically stratified and cross-shelf density gradients do not present a barrier as in winter.  相似文献   
995.
We analyze the relationship between the mass of a spherical component and the minimum possible thickness of stable stellar disks. This relationship for real galaxies allows the lower limit on the dark halo mass to be estimated (the thinner the stable stellar disk is, the more massive the dark halo must be). In our analysis, we use both theoretical relations and numerical N-body simulations of the dynamical evolution of thin disks in the presence of spherical components with different density profiles and different masses. We conclude that the theoretical relationship between the thickness of disk galaxies and the mass of their spherical components is a lower envelope for the model data points. We recommend using this theoretical relationship to estimate the lower limit for the dark halo mass in galaxies. The estimate obtained turns out to be weak. Even for the thinnest galaxies, the dark halo mass within four exponential disk scale lengths must be more than one stellar disk mass.  相似文献   
996.
Magnetosonic wave formation driven by an expanding cylindrical piston is numerically simulated to obtain better physical insight into the initiation and evolution of large-scale coronal waves caused by coronal eruptions. Several very basic initial configurations are employed to analyze intrinsic characteristics of MHD wave formation that do not depend on specific properties of the environment. It turns out that these simple initial configurations result in piston/wave morphologies and kinematics that reproduce common characteristics of coronal waves. In the initial stage, the wave and the expanding source region cannot be clearly resolved; i.e. a certain time is needed before the wave detaches from the piston. Thereafter, it continues to travel as what is called a “simple wave.” During the acceleration stage of the source region inflation, the wave is driven by the piston expansion, so its amplitude and phase-speed increase, whereas the wavefront profile steepens. At a given point, a discontinuity forms in the wavefront profile; i.e. the leading edge of the wave becomes shocked. The time/distance required for the shock formation is shorter for a more impulsive source-region expansion. After the piston stops, the wave amplitude and phase speed start to decrease. During the expansion, most of the source region becomes strongly rarefied, which reproduces the coronal dimming left behind the eruption. However, the density increases at the source-region boundary, and stays enhanced even after the expansion stops, which might explain stationary brightenings that are sometimes observed at the edges of the erupted coronal structure. Also, in the rear of the wave a weak density depletion develops, trailing the wave, which is sometimes observed as weak transient coronal dimming. Finally, we find a well-defined relationship between the impulsiveness of the source-region expansion and the wave amplitude and phase speed. The results for the cylindrical piston are also compared with the outcome for a planar wave that is formed by a one-dimensional piston, to find out how different geometries affect the evolution of the wave.  相似文献   
997.
With the aid of the spectra taken in the years 1959–1968, a physical analysis of the atmosphere of P Cygni has been carried out and the motions of the atmosphere have been studied. The variations of radial velocities, the velocity progressions of Balmer and Hei lines, the high rate of mass loss (2×10–5 M yr–1), the features of the observed line profiles, especially that of H-K lines of Caii andD 1-D 2 lines of Nai confirm the conclusion of Van Blerkom (1978), concerning the assumption of an accelerating atmosphere for P Cygni. The electron density variation with the radius seems to ben e r –5/2, with an average value of 7×1011cm–3 at the lower boundary of the atmosphere.In order to explain the two absorption components of observed lines, an atmospheric model based on the assumption of three envelopes, two of which accelerate gradually with two different velocity laws (up to 11.2r c ), and the third of which accelerates rapidly with a standard velocity law (beyond 11.2r c ) has been developed. From this model and the observed profiles, the geometrical thicknesses of the line-forming regions of H, H, H, and H are derived.The observations were obtained at Haute Provence Observatory (CNRS).  相似文献   
998.
From a set of stellar spectropolarimetric observations, we report the detection of surface magnetic fields in a sample of four solar-type stars, namely HD 73350, HD 76151, HD 146233 (18 Sco) and HD 190771. Assuming that the observed variability of polarimetric signal is controlled by stellar rotation, we establish the rotation periods of our targets, with values ranging from 8.8 d (for HD 190771) to 22.7 d (for HD 146233). Apart from rotation, fundamental parameters of the selected objects are very close to the Sun's, making this sample a practical basis to investigate the specific impact of rotation on magnetic properties of Sun-like stars.
We reconstruct the large-scale magnetic geometry of the targets as a low-order  (ℓ < 10)  spherical harmonic expansion of the surface magnetic field. From the set of magnetic maps, we draw two main conclusions. (i) The magnetic energy of the large-scale field increases with rotation rate. The increase in chromospheric emission with the mean magnetic field is flatter than observed in the Sun. Since the chromospheric flux is also sensitive to magnetic elements smaller than those contributing to the polarimetric signal, this observation suggests that a larger fraction of the surface magnetic energy is stored in large scales as rotation increases. (ii) Whereas the magnetic field is mostly poloidal for low rotation rates, more rapid rotators host a large-scale toroidal component in their surface field. From our observations, we infer that a rotation period lower than ≈12 d is necessary for the toroidal magnetic energy to dominate over the poloidal component.  相似文献   
999.
The formation of organic compounds in the atmosphere of Titan is an ongoing process of the generation of complex organics from the simplest hydrocarbon, methane. Solar radiation and magnetosphere electrons are the main energy sources that drive the reactions in Titan's atmosphere. Since energy from solar radiation is 200 times greater than that from magnetosphere electrons, we have investigated the products formed by the action of UV radiation (185 and 254 nm) on a mixture of gases containing nitrogen, methane, hydrogen, acetylene, ethylene, and cyanoacetylene, the basic gas mixture (BGM) that simulates aspects of Titan's atmosphere using a flow reactor [Tran, B.N., Ferris, J.P., Chera, J.J., 2003a. Icarus 162, 114-124; Tran, B.N., Joseph, J.C., Force, M., Briggs, R.G., Vuitton, V., Ferris, J.P., 2005. Icarus 177, 106-115]. The present research extends these studies by the addition of carbon monoxide and hydrogen cyanide to the BGM. Quantum yields for the loss of reactants and the formation of volatile products were determined and compared with those measured in the absence of the hydrogen cyanide and carbon monoxide. The GCMS analyses of the volatile photolysis products from the BGM, with added hydrogen cyanide, had a composition similar to that of the BGM while the photolysis products of the BGM with added carbon monoxide contained many oxygenated compounds. The infrared spectrum of the corresponding solid product revealed the absorption band of a ketone group, which was probably formed from the reaction of carbon monoxide with the free radicals generated by photolysis of acetylene and ethylene. Of particular interest was the observation that the addition of HCN to the gas mixture only resulted in a very small change in the C/N ratio and in the intensity of the CN frequency at 2210 cm−1 in the infrared spectrum suggesting that little HCN is incorporated into the haze analog. The C/N ratio of the haze analogs was found to be in the 10-12 range. The UV spectra of the solid products formed when HCN or CO added to the BGM is similar to the UV absorption formed from the BGM alone. This result is consistent with absence of additional UV chromophores to the solid product when these mixtures are photolyzed. The following photoproducts, which were not starting materials in our photochemical studies, have been observed on Titan: acetonitrile, benzene, diacetylene, ethane, propene, propane, and propyne.  相似文献   
1000.
Using ion-electron fluid parameters derived from Cassini Plasma Spectrometer (CAPS) observations within Saturn's inner magnetosphere as presented in Sittler et al. [2006a. Cassini observations of Saturn's inner plasmasphere: Saturn orbit insertion results. Planet. Space Sci., 54, 1197-1210], one can estimate the ion total flux tube content, NIONL2, for protons, H+, and water group ions, W+, as a function of radial distance or dipole L shell. In Sittler et al. [2005. Preliminary results on Saturn's inner plasmasphere as observed by Cassini: comparison with Voyager. Geophys. Res. Lett. 32(14), L14S04), it was shown that protons and water group ions dominated the plasmasphere composition. Using the ion-electron fluid parameters as boundary condition for each L shell traversed by the Cassini spacecraft, we self-consistently solve for the ambipolar electric field and the ion distribution along each of those field lines. Temperature anisotropies from Voyager plasma observations are used with (T/T)W+∼5 and (T/T)H+∼2. The radio and plasma wave science (RPWS) electron density observations from previous publications are used to indirectly confirm usage of the above temperature anisotropies for water group ions and protons. In the case of electrons we assume they are isotropic due to their short scattering time scales. When the above is done, our calculation show NIONL2 for H+ and W+ peaking near Dione's L shell with values similar to that found from Voyager plasma observations. We are able to show that water molecules are the dominant source of ions within Saturn's inner magnetosphere. We estimate the ion production rate SION∼1027 ions/s as function of dipole L using NH+, NW+ and the time scale for ion loss due to radial transport τD and ion-electron recombination τREC. The ion production shows localized peaks near the L shells of Tethys, Dione and Rhea, but not Enceladus. We then estimate the neutral production rate, SW, from our ion production rate, SION, and the time scale for loss of neutrals by ionization, τION, and charge exchange, τCH. The estimated source rate for water molecules shows a pronounced peak near Enceladus’ L shell L∼4, with a value SW∼2×1028 mol/s.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号