首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   262230篇
  免费   5276篇
  国内免费   3486篇
测绘学   7015篇
大气科学   19428篇
地球物理   54843篇
地质学   91806篇
海洋学   22008篇
天文学   56906篇
综合类   1022篇
自然地理   17964篇
  2021年   2241篇
  2020年   2636篇
  2019年   2866篇
  2018年   4046篇
  2017年   3779篇
  2016年   6012篇
  2015年   4259篇
  2014年   6973篇
  2013年   14276篇
  2012年   6726篇
  2011年   8354篇
  2010年   7500篇
  2009年   10089篇
  2008年   8724篇
  2007年   8284篇
  2006年   9642篇
  2005年   7817篇
  2004年   7686篇
  2003年   7194篇
  2002年   6729篇
  2001年   5991篇
  2000年   5941篇
  1999年   5208篇
  1998年   5230篇
  1997年   5020篇
  1996年   4681篇
  1995年   4422篇
  1994年   4112篇
  1993年   3846篇
  1992年   3617篇
  1991年   3587篇
  1990年   3766篇
  1989年   3518篇
  1988年   3304篇
  1987年   3846篇
  1986年   3412篇
  1985年   4230篇
  1984年   4745篇
  1983年   4414篇
  1982年   4320篇
  1981年   3941篇
  1980年   3653篇
  1979年   3514篇
  1978年   3497篇
  1977年   3280篇
  1976年   3043篇
  1975年   2962篇
  1974年   2914篇
  1973年   3083篇
  1972年   2027篇
排序方式: 共有10000条查询结果,搜索用时 312 毫秒
351.
We study the evolution of binary stars in globular clusters using a new Monte Carlo approach combining a population synthesis code ( startrack ) and a simple treatment of dynamical interactions in the dense cluster core using a new tool for computing three- and four-body interactions ( fewbody ). We find that the combination of stellar evolution and dynamical interactions (binary–single and binary–binary) leads to a rapid depletion of the binary population in the cluster core. The maximum binary fraction today in the core of a typical dense cluster such as 47 Tuc, assuming an initial binary fraction of 100 per cent, is only ∼ 5–10 per cent. We show that this is in good agreement with recent Hubble Space Telescope observations of close binaries in the core of 47 Tuc, provided that a realistic distribution of binary periods is used to interpret the results. Our findings also have important consequences for the dynamical modelling of globular clusters, suggesting that 'realistic models' should incorporate much larger initial binary fractions than has usually been the case in the past.  相似文献   
352.
We use the observed polarization properties of a sample of 26 powerful radio galaxies and radio-loud quasars to constrain the conditions in the Faraday screens local to the sources. We adopt the cosmological redshift, low-frequency radio luminosity and physical size of the large-scale radio structures as our 'fundamental' parameters. We find no correlation of the radio spectral index with any of the fundamental parameters. The observed rotation measure is also independent of these parameters, suggesting that most of the Faraday rotation occurs in the Galactic foreground. The difference between the rotation measures of the two lobes of an individual source, as well as the dispersion of the rotation measure, shows significant correlations with the source redshift, but not with the radio luminosity or source size. This is evidence that the small-scale structure observed in the rotation measure is caused by a Faraday screen local to the sources. The observed asymmetries between the lobes of our sources show no significant trends with each other or other source properties. Finally, we show that the commonly used model for the depolarization of synchrotron radio emission by foreground Faraday screens is inconsistent with our observations. We apply alternative models to our data and show that they require a strong increase of the dispersion of the rotation measure inside the Faraday screens with cosmological redshift. Correcting our observations with these models for redshift effects, we find a strong correlation of the depolarization measure with redshift and a significantly weaker correlation with radio luminosity. We do not find any (anti-)correlation of depolarization measure with source size. All our results are consistent with a decrease in the order of the magnetic field structure of the Faraday screen local to the sources for increasing cosmological redshift.  相似文献   
353.
Observations of the interstellar medium reveal a dynamic realm permeated by shocks. These shocks are generated on a large range of scales by galactic rotation, supernovae, stellar winds, and other processes. Whenever a shock encounters a density interface, Richtmyer-Meshkov instabilities may develop. Perturbations along the interface grow, leading to structure formation and material mixing. An understanding of the evolution of Richtmyer-Meshkov instabilities is essential for understanding galactic structure, molecular cloud morphology, and the early stages of star formation. An ongoing experimental campaign studies Richtmyer-Meshkov mixing in a convergent, compressible, miscible plasma at the Omega laser facility. Cylindrical targets, consisting of a low density foam core and an aluminum shell covered by an epoxy ablator, are directly driven by fifty laser beams. The aluminum shell is machined to produce different perturbation spectra. Surface types include unperturbed (smooth), single-mode sinusoids, multi-mode (rough), and multi-mode with particular modes accentuated (specified-rough). Experimental results are compared to theory and numerical simulations.  相似文献   
354.
355.
356.
357.
An investigation of 531 active regions was made to determine the correlation between energy released by flares and the available energy in magnetic fields of the regions. Regions with magnetic flux greater than 1021 maxwell during the years 1967–1969, which included sunspot maximum, were selected for the investigation. A linear regression analysis of flare production on magnetic flux showed that the flare energy is correlated with magnetic energy with a coeificient of correlation of 0.78. Magnetic classification and field configuration also significantly affect the production of flares.This work was supported by the Aerospace Sponsored Research Program.  相似文献   
358.
A variety of measures of organic matter concentration and quality were made on samples collected from the top few mm of intertidal mudflat sediment over the course of a year, in order to assess the relative importance of biological and sedimentological influences on sedimentary organic matter. Winter and summer were times of relatively fine-grained sediment accumulation, caused by biological deposition or stabilization processes and resulting in higher organic matter concentrations. Stable carbon isotope and Br:C ratios indicated a planktonic source of bulk organic matter. Ratios of organic carbon to specific surface area of the sediments were consistent with an organic monolayer coverage of sediment grains. Correction for changing grain size during the year showed no change in the organic concentration per unit surface area, in spite of organic matter inputs by in situ primary production, buildup of heterotroph biomass and mucus coatings, and biodeposition of organic-rich seston. There were also no indications of changes in bulk organic quality, measured as hydrolyzable carbohydrates and amino acids, in response to these biological processes. It is concluded that biological processes on a seasonal time scale affect the bulk organic matter of these sediments via a modulation of grain size rather than creation or decay of organic matter.  相似文献   
359.
Laboratory measurements of the OI1173989 Å (3s' 3D° → 2p41D, 3s' 3D° → 2p43P) branching ratio have been made with a value of 1.5 × 10t-4 indicated. This value makes the branching transition at 1173 Å an order of magnitude stronger than the branch at 7990 Å (3s' 3D° → 3p 3P). The 1173 Å branching loss is still too weak a loss process for multiply scattered 989 Å photons to resolve the 989 Å intensity problem in the dayglow.  相似文献   
360.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号