首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   29233篇
  免费   464篇
  国内免费   321篇
测绘学   616篇
大气科学   1818篇
地球物理   5233篇
地质学   11263篇
海洋学   2963篇
天文学   6859篇
综合类   68篇
自然地理   1198篇
  2022年   297篇
  2021年   455篇
  2020年   510篇
  2019年   556篇
  2018年   1091篇
  2017年   1040篇
  2016年   1146篇
  2015年   545篇
  2014年   1041篇
  2013年   1686篇
  2012年   1152篇
  2011年   1433篇
  2010年   1282篇
  2009年   1557篇
  2008年   1329篇
  2007年   1395篇
  2006年   1301篇
  2005年   755篇
  2004年   706篇
  2003年   659篇
  2002年   685篇
  2001年   619篇
  2000年   567篇
  1999年   460篇
  1998年   480篇
  1997年   453篇
  1996年   390篇
  1995年   349篇
  1994年   377篇
  1993年   294篇
  1992年   294篇
  1991年   286篇
  1990年   322篇
  1989年   220篇
  1988年   225篇
  1987年   268篇
  1986年   209篇
  1985年   314篇
  1984年   276篇
  1983年   258篇
  1982年   275篇
  1981年   203篇
  1980年   243篇
  1979年   195篇
  1978年   211篇
  1977年   165篇
  1976年   163篇
  1975年   172篇
  1974年   167篇
  1973年   166篇
排序方式: 共有10000条查询结果,搜索用时 218 毫秒
951.
Lacustrine groundwater discharge (LGD) transports nutrients from a catchment to a lake, which may fuel eutrophication, one of the major threats to our fresh waters. Unfortunately, LGD has often been disregarded in lake nutrient studies. Most measurement techniques are based on separate determinations of volume and nutrient concentration of LGD: Loads are calculated by multiplying seepage volumes by concentrations of exfiltrating water. Typically low phosphorus (P) concentrations of pristine groundwater often are increased due to anthropogenic sources such as fertilizer, manure or sewage. Mineralization of naturally present organic matter might also increase groundwater P. Reducing redox conditions favour P transport through the aquifer to the reactive aquifer‐lake interface. In some cases, large decreases of P concentrations may occur at the interface, for example, due to increased oxygen availability, while in other cases, there is nearly no decrease in P. The high reactivity of the interface complicates quantification of groundwater‐borne P loads to the lake, making difficult clear differentiation of internal and external P loads to surface water. Anthropogenic sources of nitrogen (N) in groundwater are similar to those of phosphate. However, the environmental fate of N differs fundamentally from P because N occurs in several different redox states, each with different mobility. While nitrate behaves essentially conservatively in most oxic aquifers, ammonium's mobility is similar to that of phosphate. Nitrate may be transformed to gaseous N2 in reducing conditions and permanently removed from the system. Biogeochemical turnover of N is common at the reactive aquifer‐lake interface. Nutrient loads from LGD were compiled from the literature. Groundwater‐borne P loads vary from 0.74 to 2900 mg PO4‐P m?2 year?1; for N, these loads vary from 0.001 to 640 g m?2 year?1. Even small amounts of seepage can carry large nutrient loads due to often high nutrient concentrations in groundwater. Large spatial heterogeneity, uncertain areal extent of the interface and difficult accessibility make every determination of LGD a challenge. However, determinations of LGD are essential to effective lake management. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   
952.
953.
954.
955.
956.
The effects of land use changes on the ecology and hydrology of natural watersheds have long been debated. However, less attention has been given to the hydrological effects of forest roads. Although less studied, several researchers have claimed that streamflow changes related to forest roads can cause a persistent and pervasive effect on hillslope hydrology and the functioning of the channel system. The main potential direct effects of forest roads on natural watersheds hydrologic response are runoff production on roads surfaces due to reduced infiltration rates, interruption of subsurface flow by road cutslopes and rapid transfer of the produced runoff to the stream network through roadside ditches. The aforementioned effects may significantly modify the total volume and timing of the hillslope flow to the stream network. This study uses detailed field data, spatial data, hydro‐meteorological records, as well as numerical simulation to investigate the effects of forest roads on the hydrological response of a small‐scale mountain experimental watershed, which is situated in the east side of Penteli Mountain, Attica, Greece. The results of this study highlight the possible effects of forest roads on the watersheds hydrological response that may significantly influence direct runoff depths and peak flow rates. It is demonstrated that these effects can be very important in permeable watersheds and that more emphasis should be given on the impact of roads on the watersheds hydrological response. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   
957.
Some conceptual models suggest that baseflow in agriculturally fragmented watersheds may contain little, if any, groundwater. This has critical implications for stream quality and ecosystem functioning. Here, we (a) identify the sources and flowpaths contributing to baseflow using 222Rn and 87Sr/86Sr and (b) quantify mean apparent ages of groundwater and baseflow using multiple isotopic tracers (CFC, SF6, 36Cl, and 3H) in 4 small (0.08 to 0.64 km2) tributary catchments to the Wabash River in Indiana, USA. 222Rn activities and 87Sr/86Sr ratios indicate that baseflow in 3 catchments is sourced primarily from groundwater; baseflow in the fourth is dominated by a source similar to agricultural run‐off. CFC‐12 data indicate that springs in 1 catchment are discharging significant proportions of water that recharged between 1974 (42 ± 2 years) and 1961 (55 ± 2 years). Those same springs have 36Cl/Cl ratios between 1,381.08 ± 29.37 (×10?15) and 1,530.64 ± 27.65 (×10?15) indicating that a substantial proportion of the discharge likely recharged between 1975 (41 years) and 1950 (66 years). Groundwater samples collected from streambed mini‐piezometers in a separate catchment have CFC‐12 concentrations indicating that a large proportion of the recharge occurred between 1948 (68 ± 2 years) and 1950 (66 ± 2 years). Repeat sampling conducted in September 2015 after above‐average summer rainfall did not show significant decreases in mean apparent age. The relatively old ages observed in 3 of the catchments can be explained by geological complexities that are likely present in all 4 catchments, but overwhelmed by flow from the shallow phreatic aquifer in the fourth catchment.  相似文献   
958.
959.
We report the first finding of diamond and moissanite in metasedimentary crustal rocks of Pohorje Mountains (Slovenia) in the Austroalpine ultrahigh‐pressure (UHP) metamorphic terrane of the Eastern Alps. Microscopic observations and Raman spectroscopy show that diamond occurs in situ as inclusions in garnet, being heterogeneously distributed. Under the optical microscope, diamond‐bearing inclusions are of cuboidal to rounded shape and of pinkish, yellow to brownish colour. The Raman spectra of the investigated diamond show a sharp, first order peak of sp3‐bonded carbon, in most cases centred between 1332 and 1330 cm?1, with a full width at half maximum between 3 and 5 cm?1. Several spectra show Raman bands typical for disordered graphitic (sp2‐bonded) carbon. Detailed observations show that diamond occurs either as a monomineralic, single‐crystal inclusion or it is associated with SiC (moissanite), CO2 and CH4 in polyphase inclusions. This rare record of diamond occurring with moissanite as fluid‐inclusion daughter minerals implies the crystallization of diamond and moissanite from a supercritical fluid at reducing conditions. Thermodynamic modelling suggests that diamond‐bearing gneisses attained P–T conditions of ≥3.5 GPa and 800–850 °C, similar to eclogites and garnet peridotites. We argue that diamond formed when carbonaceous sediment underwent UHP metamorphism at mantle depth exceeding 100 km during continental subduction in the Late Cretaceous (c. 95–92 Ma). The finding of diamond confirms UHP metamorphism in the Pohorje Mountains, the most deeply subducted part of Austroalpine units.  相似文献   
960.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号