首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   29325篇
  免费   391篇
  国内免费   320篇
测绘学   617篇
大气科学   1817篇
地球物理   5248篇
地质学   11265篇
海洋学   2963篇
天文学   6860篇
综合类   68篇
自然地理   1198篇
  2022年   297篇
  2021年   455篇
  2020年   509篇
  2019年   556篇
  2018年   1091篇
  2017年   1040篇
  2016年   1147篇
  2015年   546篇
  2014年   1041篇
  2013年   1686篇
  2012年   1152篇
  2011年   1433篇
  2010年   1283篇
  2009年   1557篇
  2008年   1329篇
  2007年   1395篇
  2006年   1301篇
  2005年   755篇
  2004年   705篇
  2003年   659篇
  2002年   687篇
  2001年   619篇
  2000年   568篇
  1999年   461篇
  1998年   479篇
  1997年   453篇
  1996年   391篇
  1995年   350篇
  1994年   378篇
  1993年   294篇
  1992年   297篇
  1991年   286篇
  1990年   322篇
  1989年   220篇
  1988年   225篇
  1987年   268篇
  1986年   209篇
  1985年   314篇
  1984年   276篇
  1983年   258篇
  1982年   276篇
  1981年   203篇
  1980年   243篇
  1979年   195篇
  1978年   211篇
  1977年   165篇
  1976年   163篇
  1975年   172篇
  1974年   167篇
  1973年   166篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
141.
With growing urban expanses, one of the pre-requisites for effective governance is Urban Information Systems (UIS) with content down to individual properties (and individuals). The basic input i.e., a map, in UIS should show individual property boundaries showing the plan outline of all structures existing within, at a scale of 1:1000 and larger with sub-metre to centimeters planimetric and geometric accuracy. With very high resolution remote sensing data of the order of 1m available in hand, it is possible to prepare maps with high resolution spatial content. The present exercise demonstrates a method of preparing a geometrically and planimetrically accurate urban cadastral map on very large scale for a small area of about 5 sq km. IKONOS merged data with 1m resolution is used for the purpose. Mapping was done in conjunction with on-site measurements and sketches. Guides are used to maintain shape symmetry and accuracy of buildings and other features. Working out cost of mapping per unit area is another objective in the present exercise. For want of fully or semi-automatic methods of information extraction from very high resolution remote sensing data, it is imperative that mapping should be carried out in conjunction with some on-site measurements wherever necessary.  相似文献   
142.
143.
A World Bank-aided project on sodic land reclamation in Uttar Pradesh is being executed by U.P. Bhumi Sudhar Nigam, Lucknow, and Remote Sensing Applications Centre, U.P., Lucknow has the responsibility of sodic land mapping for the execution of land reclamation programme at the cadastral level. Sodic lands are mainly concentrated in the Gangetic alluvial plains but the problem of sodicity is particularly acute in the canal-irrigated areas. A study of the distribution pattern of sodic lands in canal and noncanal command areas in a reclamation site (covering 60 villages out of which sodic lands were mapped in 51 villages) of Etah district in Uttar Pradesh, indicates that 18.39 per cent area of the canal command villages was barren sodic which was 13.41 per cent of the total geographical area of the site (15417 ha), however, 11.69 per cent area was recorded to be barren sodic in the non-canal command villages which was only 3.16 per cent of the geographical area of the site. The results of soil chemical analysis indicate that barren sodic lands of canal command area are saline-sodic with higher concentration of soluble salts (pH2 >8.5, EC2 >4 dSm−1), however, those of non-canal command area are sodic (pH2 >8.5, EC2 <4 dSm−1). The post-monsoon ground level in the canal-irrigated areas was in the critical and semicritical zone (< 3.0 mbgl) whereas it was well below the semi-critical zone in the non-canal command area, which indicates that the high ground water level is a major factor to higher the area under sodicity.  相似文献   
144.
In the present study, The Landsat 7 ETM satellite data was collected for the Sittampundi anorthosites complex and digital image analysis was carried out. The anorthositic rocks available at Sittampundi complex is considered as an equivalent of lunar highland rocks. Hence, a remote sensing study comprises of image analysis and spectral profile analysis was carried out. The satellite data was digitally processed and generated various outputs like band combinations, color composites, stretched outputs, and PCA. The suitable processed outputs were identified for delineating the anorthosite complex. The diagnostic absorption features of reflectance spectra are the sensitive indicators of mineralogy and chemical composition of rocks, which are interest to the planetary scientists. The spectral profile of Landsat ETM plotted for pure and mixed anorthosite pixels and compared with the field and lab reflectance spectra. The percentages of image spectra vary from 30% to 60% for Sittampundi anorthosite. The spectral bands 2, 4 and 6 have low reflectance and bands 3 and 5 have high reflectance. The spectral range of bands 2,3,4,5 and 6 are 525 nm–605 nm, 630 nm–690 nm, 750 nm–900 nm, 1550 nm–1750 nm and 10400 nm–12500 nm respectively. The field spectral curve has weak absorptions at 650 nm and 1000 nm due to the iron transition absorption and low ca- pyroxene respectively available in the anorthosite, matching with the image spectra. However, hyperspectal image with narrow bandwidth could be more useful in selecting the suitable spectrum for remotely mapping the anorthosite region, as equivalent test site for lunar highland region.  相似文献   
145.
Geo-visualization concept has been used for positioning water harvesting structures in Varekhadi watershed consisting of 26 mini watersheds, falling in Lower Tapi Basin (LTB), Surat district, Gujarat state. For prioritization of the mini watersheds, morphometric analysis was utilized by using the linear parameters such as bifurcation ratio (Rb), drainage density (Dd), stream frequency (Fu), texture ratio (T), length of overland flow (Lo) and the shape parameter such as form factor (Rf), shape factor (Bs), elongation ratio (Re), compactness constant (Cc) and circularity ratio (Rc). The different prioritization ranks were assigned after evaluation of the compound factor. 3 Dimensional (3D) Elevation Model (DEM) from Shuttle Radar Topography Mission (SRTM) and DEM from topo contour were analyzed in ArcScene 9.1 and the fly tool was utilized for the Geo-visualization of Varekhadi mini watersheds as per the priority ranks. Combining this with soil map and slope map, the best feasibility of positioning check dams in mini-watershed no. 1, 5 and 24 has been proposed, after validation of the sites.  相似文献   
146.
Bolhasan Forest region with an area of 5,725?ha is located on east north of Dezful County, Iran. The region belongs to natural forests of Dezful. Considering the area is mainly covered by valuable species of Amygdalus Scopartia, its sustainable exploitation and development as well as restoration enjoys great importance. Study ahead aims at selection of suitable habitats for under studied species using Analytical Hierarchy Process (AHP). Therewith, the required thematic maps were imported in to GIS Software and final suitability map was prepared. The results indicated that around 2,119?ha (37%) out of all study area has high suitability for habitat of Amygdalus Scopartia. In the meanwhile, 1,603?ha [equal to 28%] is categorized as good suitability class and 2,003?ha [35%] has poor suitability.  相似文献   
147.
 The traditional remove-restore technique for geoid computation suffers from two main drawbacks. The first is the assumption of an isostatic hypothesis to compute the compensation masses. The second is the double consideration of the effect of the topographic–isostatic masses within the data window through removing the reference field and the terrain reduction process. To overcome the first disadvantage, the seismic Moho depths, representing, more or less, the actual compensating masses, have been used with variable density anomalies computed by employing the topographic–isostatic mass balance principle. In order to avoid the double consideration of the effect of the topographic–isostatic masses within the data window, the effect of these masses for the used fixed data window, in terms of potential coefficients, has been subtracted from the reference field, yielding an adapted reference field. This adapted reference field has been used for the remove–restore technique. The necessary harmonic analysis of the topographic–isostatic potential using seismic Moho depths with variable density anomalies is given. A wide comparison among geoids computed by the adapted reference field with both the Airy–Heiskanen isostatic model and seismic Moho depths with variable density anomaly and a geoid computed by the traditional remove–restore technique is made. The results show that using seismic Moho depths with variable density anomaly along with the adapted reference field gives the best relative geoid accuracy compared to the GPS/levelling geoid. Received: 3 October 2001 / Accepted: 20 September 2002 Correspondence to: H.A. Abd-Elmotaal  相似文献   
148.
Satellite gravity missions, such as CHAMP, GRACE and GOCE, and airborne gravity campaigns in areas without ground gravity will enhance the present knowledge of the Earths gravity field. Combining the new gravity information with the existing marine and ground gravity anomalies is a major task for which the mathematical tools have to be developed. In one way or another they will be based on the spectral information available for gravity data and noise. The integration of the additional gravity information from satellite and airborne campaigns with existing data has not been studied in sufficient detail and a number of open questions remain. A strategy for the combination of satellite, airborne and ground measurements is presented. It is based on ideas independently introduced by Sjöberg and Wenzel in the early 1980s and has been modified by using a quasi-deterministic approach for the determination of the weighting functions. In addition, the original approach of Sjöberg and Wenzel is extended to more than two measurement types, combining the Meissl scheme with the least-squares spectral combination. Satellite (or geopotential) harmonics, ground gravity anomalies and airborne gravity disturbances are used as measurement types, but other combinations are possible. Different error characteristics and measurement-type combinations and their impact on the final solution are studied. Using simulated data, the results show a geoid accuracy in the centimeter range for a local test area.  相似文献   
149.
We examine the relationship between source position stability and astrophysical properties of radio-loud quasars making up the International Celestial Reference Frame (ICRF2). Understanding this relationship is important for improving quasar selection and analysis strategies, and therefore reference frame stability. We construct flux density time series, known as light curves, for 95 of the most frequently observed ICRF2 quasars at both the 2.3 and 8.4 GHz geodetic very long baseline interferometry (VLBI) observing bands. Because the appearance of new quasar components corresponds to an increase in quasar flux density, these light curves alert us about potential changes in source structure before they appear in VLBI images. We test how source position stability depends on three astrophysical parameters: (1) flux density variability at X band; (2) time lag between flares in S and X bands; (3) spectral index root-mean-square (rms), defined as the variability in the ratio between S and X band flux densities. We find that the time lag between S and X band light curves provides a good indicator of position stability: sources with time lags $<$ 0.06 years are significantly more stable ( $>$ 20 % improvement in weighted rms) than sources with larger time lags. A similar improvement is obtained by observing sources with low $(<$ 0.12) spectral index variability. On the other hand, there is no strong dependence of source position stability on flux density variability in a single frequency band. These findings can be understood by interpreting the time lag between S and X band light curves as a measure of the size of the source structure. Monitoring of source flux density at multiple frequencies therefore appears to provide a useful probe of quasar structure on scales important to geodesy. The observed astrometric position of the brightest quasar component (the core) is known to depend on observing frequency. We show how multi-frequency flux density monitoring may allow the dependence on frequency of the relative core positions along the jet to be elucidated. Knowledge of the position–frequency relation has important implications for current and future geodetic VLBI programs, as well as the alignment between the radio and optical celestial reference frames.  相似文献   
150.
The use of Local Area Coverage (LAC) data from Ocean Color Monitor (OCM) sensor of Oceansat-2 with its high radiometric resolution (12 bits/pixel) and 2-day repeat cycle for rapid monitoring of vegetation growth and estimating surface albedo for the Indian region is demonstrated in this study. For the vegetation monitoring, normalized difference vegetation index (NDVI) and vegetation fraction (VF) products were estimated by maximum value composite approach fortnightly and were resampled to 1 km. The surface albedo products were realized by converting narrow-band eight-band spectral reflectance OCM data to a) visible (300–700 nm) and b) broad band (300–3,000 nm) data. For validation, the derived products were compared with respective MODIS global products and found to be in good agreement.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号