首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   18篇
  免费   0篇
大气科学   1篇
地球物理   5篇
地质学   6篇
天文学   4篇
自然地理   2篇
  2014年   1篇
  2013年   1篇
  2010年   1篇
  2005年   2篇
  1992年   1篇
  1989年   1篇
  1986年   1篇
  1985年   4篇
  1984年   1篇
  1983年   1篇
  1982年   1篇
  1981年   1篇
  1979年   1篇
  1978年   1篇
排序方式: 共有18条查询结果,搜索用时 15 毫秒
11.
The definition of the continent-ocean boundary at passive continental margins has proved to be an elusive task. Even the relatively direct method of seismic refraction experiments has yielded results that cannot always be interpreted unequivocally. Multichannel seismic reflection profiles on many passive margins have revealed the presence of remarkable suites of arcuate reflectors, dipping seaward to form a wedge-shaped structure. Their general characteristics and velocity structure suggest that they may be largely volcanic in nature, but there is no agreed upon model for their origin. Nevertheless it is generally thought that they lie at or close to the boundary between continent and ocean, and as such they are extremely important structural markers that may yield important evidence concerning the structure and evolution of passive margins.  相似文献   
12.
Severe wind storms are one of the major natural hazards in the extratropics and inflict substantial economic damages and even casualties. Insured storm-related losses depend on (i) the frequency, nature and dynamics of storms, (ii) the vulnerability of the values at risk, (iii) the geographical distribution of these values, and (iv) the particular conditions of the risk transfer. It is thus of great importance to assess the impact of climate change on future storm losses. To this end, the current study employs—to our knowledge for the first time—a coupled approach, using output from high-resolution regional climate model scenarios for the European sector to drive an operational insurance loss model. An ensemble of coupled climate-damage scenarios is used to provide an estimate of the inherent uncertainties. Output of two state-of-the-art global climate models (HadAM3, ECHAM5) is used for present (1961–1990) and future climates (2071–2100, SRES A2 scenario). These serve as boundary data for two nested regional climate models with a sophisticated gust parametrizations (CLM, CHRM). For validation and calibration purposes, an additional simulation is undertaken with the CHRM driven by the ERA40 reanalysis. The operational insurance model (Swiss Re) uses a European-wide damage function, an average vulnerability curve for all risk types, and contains the actual value distribution of a complete European market portfolio. The coupling between climate and damage models is based on daily maxima of 10 m gust winds, and the strategy adopted consists of three main steps: (i) development and application of a pragmatic selection criterion to retrieve significant storm events, (ii) generation of a probabilistic event set using a Monte-Carlo approach in the hazard module of the insurance model, and (iii) calibration of the simulated annual expected losses with a historic loss data base. The climate models considered agree regarding an increase in the intensity of extreme storms in a band across central Europe (stretching from southern UK and northern France to Denmark, northern Germany into eastern Europe). This effect increases with event strength, and rare storms show the largest climate change sensitivity, but are also beset with the largest uncertainties. Wind gusts decrease over northern Scandinavia and Southern Europe. Highest intra-ensemble variability is simulated for Ireland, the UK, the Mediterranean, and parts of Eastern Europe. The resulting changes on European-wide losses over the 110-year period are positive for all layers and all model runs considered and amount to 44% (annual expected loss), 23% (10 years loss), 50% (30 years loss), and 104% (100 years loss). There is a disproportionate increase in losses for rare high-impact events. The changes result from increases in both severity and frequency of wind gusts. Considerable geographical variability of the expected losses exists, with Denmark and Germany experiencing the largest loss increases (116% and 114%, respectively). All countries considered except for Ireland (?22%) experience some loss increases. Some ramifications of these results for the socio-economic sector are discussed, and future avenues for research are highlighted. The technique introduced in this study and its application to realistic market portfolios offer exciting prospects for future research on the impact of climate change that is relevant for policy makers, scientists and economists.  相似文献   
13.
14.
Photoelectric observations of the eclipsing variable β Per, were obtained inUBV standard system, and new elements for the primary minimum were determined as $$J.D. = 2445641.5135,O - C = 0_.^d 0.009.$$ The light curves of the system were analysed using Fourier techniques in the frequency-domain. The fractional radii of both components are $$r_1 = 0.217 \pm 0.002,r_2 = 0.233 \pm 0.002andi = 85.5 \pm 0.5.$$ Absolute elements were derived and the effective temperatures are $$T_1 = 11800K,T_2 = 5140K.$$   相似文献   
15.
Reconstructions to total closure of the Australia-Antarctic continents causes an unacceptable overlap of Broken Ridge and Kerguelen Plateau. This has been partially resolved in the past by supposing that the northern part of Kerguelen, that is principally involved in the overlap, is younger than the remainder. We have revised the early reconstructions using a newly proposed breakup chronology of Australia and Antarctica which suggests that opening began at least 90 m.y. B.P. at an initially slow rate. This eliminates the overlap problem without invoking major age differences within the Kerguelen Plateau. We also suggest that the northeastern flank of Kerguelen Plateau may be underlain by the “missing” westward continuation of the Diamantina Zone. It may have been isolated on the Antarctic plate by a ridge crest jump at about anomaly 24 time that also formed the Ob Trench.  相似文献   
16.
The arguments justifying the revised timing of breakup between Australia and Antarctica (Cande and Mutter, 1982) and the reconstruction of Broken Ridge and Kerguelen Plateau (Mutter and Cande, 1983) are reviewed and considered with respect to new subsidence data. The age of breakup was revised from anomaly 22 time (55 My B.P.) to anomaly 34 time (85 My B.P.). The rough topography of the Diamantina Zone can be attributed to very slow spreading (−5 mm/yr.) beginning between the times of anomaly 34 and anomaly 19. The reconstruction of Broken Ridge and Kerguelen Plateau at anomaly 34 time shows overlap of these two features, but the overlap problem is nearly resolved by anomaly 18 time ( ~ 42 My B.P.). Normal seafloor spreading rates (22 mm/yr.) commenced at anomaly 19 time ( ~ 43 My B.P.). Subsidence patterns calculated from biostratigraphic data from wells drilled along Australia's southern margin are interpreted as more consistent with the revised age of Australia-Antarctic breakup. Subsidence curves systematically show rapid subsidence associated with the rift phase of margin development followed by much slower thermally-controlled subsidence during the drift phase. The timing of the rift-to-drift transition is believed to coincide with the age of breakup ( ~ 60 to 110 My B.P.). In addition, the subsidence curves indicate a west-to-east propagation of breakup along the southern margin. Magnetic anomaly patterns and stratigraphie observations are consistent with this hypothesis.  相似文献   
17.
The aim of the present paper is to present the analysis of light changes of four Lyrae eclipsing systems (DO Cas, KR Cyg, V388 Cyg, and SV Cen) using the automated Fourier techniques in the frequency-domain.The applicability of the above method to the Lyrae system discussed. New physical and geometrical elements of these systems are derived. Their positions in the H-R diagram and mass-luminosity diagram are indicated.  相似文献   
18.
Present models of continental breakup envisage the formation of a rift valley which undergoes a protracted period of tectonism and eventual seafloor spreading in the axial part of the rift valley. This results in evidence of pre-breakup tectonism on most Atlantic-type margins in the form of normal blockfaults beneath the continental slope. The southeastern margin of the Australian continent has an unusually steep continental slope and shows little evidence of tectonism associated with the rift valley stage of development. The margin was formed by separation of the Lord Howe Rise and Australia during a phase of seafloor spreading in the Tasman Sea which lasted from about 80 to 60 m.y. B.P. Marine geophysical data over the central Lord Howe Rise indicate a contrast between the western and eastern part of of this structure. The western part shows faulted, rough basement topography, disturbed overlying sediments, and a relatively quiet magnetic field. The eastern part shows a smooth basement surface, undisturbed overlying sediments, and a high-amplitude, high-frequency magnetic field. It is suggested that the whole of the pre-breakup rift valley remained attached to the Lord Howe Rise. This explains the absence of rift valley structures within the eastern continental margin of Australia and implies non-axial breaching along the western boundary fault of a pre-Tasman Sea rift valley.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号