首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   149篇
  免费   3篇
  国内免费   1篇
测绘学   3篇
大气科学   9篇
地球物理   30篇
地质学   39篇
海洋学   28篇
天文学   33篇
综合类   1篇
自然地理   10篇
  2023年   1篇
  2021年   2篇
  2020年   2篇
  2019年   1篇
  2018年   4篇
  2017年   4篇
  2016年   6篇
  2015年   2篇
  2014年   4篇
  2013年   3篇
  2012年   4篇
  2011年   2篇
  2010年   5篇
  2009年   7篇
  2008年   12篇
  2007年   9篇
  2006年   10篇
  2005年   9篇
  2004年   6篇
  2003年   3篇
  2002年   6篇
  2001年   6篇
  2000年   11篇
  1999年   6篇
  1998年   4篇
  1997年   1篇
  1996年   2篇
  1995年   3篇
  1994年   1篇
  1993年   2篇
  1990年   1篇
  1988年   1篇
  1986年   1篇
  1985年   5篇
  1984年   2篇
  1979年   1篇
  1977年   1篇
  1976年   1篇
  1974年   1篇
  1973年   1篇
排序方式: 共有153条查询结果,搜索用时 156 毫秒
21.
The crystal structures of the two hydrous wadsleyite crystals with formulae, Mg1.75SiH0.50O4 (0.5H–β) and Mg1.86SiH0.28O4 (0.3H–β) have been analyzed in this study. The single-crystal X-ray diffraction data showed that the unit cells of the 0.3H–β and the 0.5H–β are metrically monoclinic with a slight distortion from the orthorhombic cell but their intensity distributions conform to the orthorhombic symmetry within the limit of experimental errors. The Fourier and the difference Fourier syntheses were calculated. Small but significant Fourier peaks were found at the site, Si2, in a normally vacant tetrahedral void adjacent to Mg3 site as reported for the monoclinic hydrous wadsleyite by Smyth et al.. From the comparison of the hydrous and anhydrous wadsleyite structures, the Mg-vacant structural modules were found to be the building units for the structure of hydrous wadsleyite. The dilution of symmetry from orthorhombic to monoclinic in the hydrous wadsleyite structure is interpreted qualitatively due to lack of mirror perpendicular to the a axis in the module. The mode of arrangement of the Mg-vacant structural modules interprets the symmetry and hydrogen content of the hydrous wadsleyite and gives the structural relationship between hydrous wadsleyite and hydrous ringwoodite. Received: 8 May 1998 / Revised, accepted: 3 October 1998  相似文献   
22.
In meandering rivers cut into bedrock, erosion across a channel cross‐section can be strongly asymmetric. At a meander apex, deep undercutting of the outer bank can result in the formation of a hanging cliff (which may drive hillslope failure), whereas the inner bank adjoins a slip‐off slope that connects to the hillslope itself. Here we propose a physically‐based model for predicting channel planform migration and incision, point bar and slip‐off slope formation, bedrock abrasion, the spatial distribution of alluvial cover, and adaptation of channel width in a mixed bedrock‐alluvial channel. We simplify the analysis by considering a numerical model of steady, uniform bend flow satisfying cyclic boundary conditions. Thus in our analysis, ‘sediment supply’, i.e. the total volume of alluvium in the system, is conserved. In our numerical simulations, the migration rate of the outer bank is a specified parameter. Our simulations demonstrate the existence of an approximate state of dynamic equilibrium corresponding to a near‐solution of permanent form in which a bend of constant curvature, width, cross‐sectional shape and alluvial cover distribution migrates diagonally downward at constant speed, leaving a bedrock equivalent of a point bar on the inside of the bend. Channel width is set internally by the processes of migration and incision. We find that equilibrium width increases with increasing sediment supply, but is insensitive to outer bank migration rate. The slope of the bedrock point bar varies inversely with both outer bank migration rate and sediment supply. Although the migration rate of the outer bank is externally imposed here, we discuss a model modification that would allow lateral side‐wall abrasion to be treated in a manner similar to the process of bedrock incision. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   
23.
In 2014 and 2015, we examined the spatial distribution of cesium-134 (half-life: 2.06 years) from the Fukushima Dai-ichi Nuclear Power Plant (FDNPP) in marine sediments within coastal–basin areas (water depths of 40–520 m) off central Honshu Island (the main island of Japan) in the Sea of Japan. The 134Cs concentrations in both the surface sediment (0–1 cm depth) and whole-core inventory exhibited wide variations, and were highest at the site closest to the Agano River Estuary area (6.7 Bq/kg-dry and 886 Bq/m2, respectively). This indicates that 134Cs in coastal areas was delivered by riverine suspended solids (SS). Given the spatial variation in 134Cs concentrations, we believe that 134Cs partially migrated northeastward within ~50 km along Honshu Island (at water depths shallower than ~140 m), and southwestward, including the Sado Basin area. This is predominantly attributable to the transport of SS by bottom currents and unsteady downward delivery onto the steep slopes of the basin. The total amount of 134Cs in the study area in 2014 was estimated at approximately 0.6 TBq (decay-corrected to March 11, 2011, date of FDNPP accident).  相似文献   
24.
The 137°E repeat hydrographic section for 50 winters during 1967–2016 has been analyzed to examine interannual to interdecadal variations and long-term changes of salinity and temperature in the surface and intermediate layers of the western North Pacific, with a particular focus on freshening in the subtropical gyre. Rapid freshening on both isobars and isopycnals began in the mid-1990s and persisted for the last 20 years in the upper main thermocline/halocline in the western subtropical gyre. In addition, significant decadal variability of salinity existed in the subtropical mode water (STMW), as previously reported for the shallower layers. An analysis of the 144°E repeat hydrographic section during 1984–2013 supplemented by Argo profiling float data in 2014 and 2015 revealed that the freshening trend and decadal variability observed at 137°E originated in the winter mixed layer in the Kuroshio Extension (KE) region and was transmitted southwestward to 137°E 1–2 years later in association with the subduction and advection of STMW. The mechanism of these changes and variations in the source region was further investigated. In addition to the surface freshwater flux in the KE region pointed out by previous studies, the decadal KE variability in association with the Pacific Decadal Oscillation likely contributes to the decadal salinity variability through water exchange between the subtropics and the subarctic across the KE. Interdecadal change in both the surface freshwater flux and the KE state, however, failed to explain the rapid freshening for the last 20 years.  相似文献   
25.
1IntroductionTheelucidationofthebudgetsofcarbon,waterandothermassesatvariouslandecosystemshasbecomeanimportantsubjectintheglobalwarmingissue.Forthisstudy,thedatafrompreciseandlong-termobservationsofcarbondioxide,watervapor,andheatfluxtakeninvariouslandsur…  相似文献   
26.
In lotic systems, the hyporheic zone has been suggested as a potential refuge for aquatic organisms during disturbances (hyporheic refuge hypothesis). However, the supporting evidence is unclear, especially regarding the survival of hyporheic refugees and their contribution to the recovery of post-disturbance populations. Moreover, few studies have focused on the importance of the hyporheic refuge for aquatic vertebrates such as fish. In this study, we present evidence that the hyporheic zone acts as a refuge for a small benthic fish (Cobitis shikokuensis) following surface drying in an intermittent river. We examined its survival during and recolonization after dry periods by direct hyporheic sampling and mark-and-recapture surveys. When the streambed dried, hyporheic sampling was conducted 58 times across 33 locations in the intermittent reach and 31 individuals of C. shikokuensis were captured from extracted hyporheic water. Mark-and-recapture surveys revealed that recolonizers after re-wetting included C. shikokuensis individuals that had survived dry periods in the hyporheic refuge. The condition factor of C. shikokuensis significantly declined after dry periods, suggesting that most recolonizers suffered from physiological stress, probably within the hyporheic refuge. These results clearly support the long-debated, hyporheic refuge hypothesis, and provide a striking example of the critical role of the hyporheic zone in population maintenance of lotic organisms.  相似文献   
27.
The three-dimensional subsurface structure model around Kansai International Airport (KIX) has been developed based on the geologically and geotechnically investigated results of a large amount of borehole data for estimation of subsidence. The model consists of the alternation of marine clay and coarse deposits. The many seismic surveys and borehole drillings were carried out around the KIX before the constructing the airport. The stratigraphy of the model was renewed by the KIX18-1, which was about 1,300 m long drilling core and was drilled near the 2nd runway of the KIX from 2006 to 2007. In this study, the subsurface geological model was revised by integration of renewed borehole data and seismic profiles to incorporate complex warping structure and heterogenic lateral variation.  相似文献   
28.
We monitored seasonal changes of the abundance and composition of microorganisms in the fish-farm sediment in Kusuura Bay, Amakusa, Japan, using the quinone profiling technique, during bioremediation by introducing cultured colonies of polychaete, Capitella sp. I. In November 2004, approximately 9.2 million cultured worms were transferred to the fish-farm sediment, which increased rapidly, and reached 458.5 gWW/m(2) (528,000 indiv./m(2)) in March 2005. During this fast-increasing period of Capitella, the microbial quinone content of the surface sediment (0-2 cm) also increased markedly, and reached 237 micromol/m(2) in January 2005, although the water temperature decreased to the lowest levels in the year. Particularly, the mole fraction of ubiquinone-10 in total quinones in the sediment, indicating the presence of alpha subclass of Proteobacteria, increased by 9.3%. These facts suggest that the bacterial growth was enhanced markedly by the biological activities of worms in the sediment, and the bacteria played an important role in the decomposition of the organic matter in the sediment.  相似文献   
29.
The oceanic carbon cycle in the tropical-subtropical Pacific is strongly affected by various physical processes with different temporal and spatial scales, yet the mechanisms that regulate air-sea CO2 flux are not fully understood due to the paucity of both measurement and modeling. Using a 3-D physical-biogeochemical model, we simulate the partial pressure of CO2 in surface water (pCO2sea) and air-sea CO2 flux in the tropical and subtropical regions from 1990 to 2004. The model reproduces well the observed spatial differences in physical and biogeochemical processes, such as: (1) relatively higher sea surface temperature (SST), and lower dissolved inorganic carbon (DIC) and pCO2sea in the western than in the central tropical-subtropical Pacific, and (2) predominantly seasonal and interannual variations in the subtropical and tropical Pacific, respectively. Our model results suggest a non-negligible contribution of the wind variability to that of the air-sea CO2 flux in the central tropical Pacific, but the modeled contribution of 7% is much less than that from a previous modeling study (30%; McKinley et al., 2004). While DIC increases in the entire region SST increases in the subtropical and western tropical Pacific but decreases in the central tropical Pacific from 1990 to 2004. As a result, the interannual pCO2sea variability is different in different regions. The pCO2sea temporal variation is found to be primarily controlled by SST and DIC, although the role of salinity and total alkalinity, both of which also control pCO2sea, need to be elucidated by long-term observations and eddy-permitting models for better estimation of the interannual variability of air-sea CO2 flux.  相似文献   
30.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号