首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   23篇
  免费   1篇
测绘学   1篇
大气科学   2篇
地球物理   15篇
天文学   4篇
综合类   1篇
自然地理   1篇
  2020年   1篇
  2014年   1篇
  2013年   4篇
  2012年   2篇
  2011年   2篇
  2008年   1篇
  2006年   1篇
  2005年   1篇
  2002年   1篇
  1999年   1篇
  1997年   1篇
  1994年   1篇
  1986年   1篇
  1983年   1篇
  1980年   1篇
  1975年   1篇
  1974年   1篇
  1973年   1篇
  1969年   1篇
排序方式: 共有24条查询结果,搜索用时 15 毫秒
21.
Nick Mount  Tim Stott 《水文研究》2008,22(18):3772-3784
In this study, a Bayesian Network (BN) is used to model the suspended sediment concentrations (SSC) in the catchments of the glaciers Noir and Blanc in the Ecrins National Park, France, and at the distal end of the proglacial zone into which both torrents drain. Relationships between air temperature, glacier discharge and SSC are represented as random variables; thereby taking the natural next step from proposed modified rating curve methods which increasingly approximate random variable approaches. Hydrological relationships are propagated through the network via conditional probability distributions computed from 980 field records obtained at three monitoring sites during July 2005. Rainfall affected data are removed from the modelling process. A two‐sample Kolmogorov–Smirnov goodness‐of‐fit (two‐sample KS) test (n = 5) shows good agreement between the probability distributions of SSC predicted by the BN, and those recorded in the field at the outflow of the proglacial zone over an air temperature range of 5–25 °C. The BN performs poorly for air temperatures between 25 and 30 °C and this is attributed to limited field records covering this temperature range. Discussion of the significant limitations surrounding the widespread application of BNs in hydrological modelling are offered with a focus on data volume and temporal limitations. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   
22.
In progressing its work for the International Arctic Seas Assessment Project (IASAP), under the auspices of the International Atomic Energy Agency (IAEA), the Source Term Working Group has developed a FORTRAN model to predict a radiation release profile into the Kara Sea from reactor fuel and activated components of the nuclear icebreaker Lenin. The model accounts for the degradation of containment materials through corrosion and other mechanisms, and predicts annual release rates to 4500 years into the future. Version I of the model was developed as a spreadsheet program from the original data gathered by the Working Group and the results were published by Timms et al. (1994); revised information on the method of disposal necessitated a change to the program, which is presented in this paper as Version II. The model is being applied to other marine reactors dumped in the Kara Sea in a programme of work for the IASAP aimed at assessing the collective release profile from all significant dump sites in this region.  相似文献   
23.
Rains MC  Mount JF 《Ground water》2002,40(5):552-563
In this study, we identify the origin of shallow ground water that supports regionally unique plant and wildlife habitats in a riparian and reservoir-fringe system using isotopic and chemical procedures. This study was conducted where Little Stony Creek flows into East Park Reservoir on the east front of the Coast Range, northern California. Little Stony Creek water, Hyphus Creek water, Franciscan Complex regional ground water, Great Valley Group regional ground water, and local shallow ground water were collected during wet and dry seasons and were analyzed for deuterium, oxygen-18, temperature, pH, redox potential, conductivity, and major cation and anion concentrations. Turnover in the local flow system is rapid indicating that local shallow ground water is dependent on recent recharge. Local shallow ground water is recharged primarily by Little Stony Creek water and Franciscan Complex ground water. In the wet season, Little Stony Creek is the more prominent source of local shallow ground water, and the ratio of Little Stony Creek water to Franciscan Complex ground water decreases with distance from the channel. In the dry season, Franciscan Complex ground water is the more prominent source of local shallow ground water, and the ratio of Little Stony Creek water to Franciscan Complex ground water decreases with distance down the valley. Franciscan Complex ground water discharges to local shallow ground water throughout the year, primarily because the local flow system is a regional low that lies perpendicular to the Franciscan Complex ground water flowpath. Little Stony Creek is a more prominent source of ground water in the wet season than in the dry season because Little Stony Creek flows continuously through the alluvial reach in the wet season and intermittently through the alluvial reach in the dry season. Extensive ground water withdrawals from the Franciscan Complex flow system could reduce the amount of water available to the local flow system, particularly during the dry season, and could substantially reduce the geographic extent of the regionally unique plant and wildlife habitats.  相似文献   
24.
Mount  George H.  Linsky  Jeffrey L. 《Solar physics》1974,35(2):259-276
We have obtained center-to-limb photoelectric spectra of the CN(1,1) B-X bandhead region λ3868–3872 Å at Kitt Peak National Observatory. From these spectra and a detailed analysis of the formation of the CN (1, 1) spectrum we derive a best-fit upper photospheric model differing from the HSRA which is consistent with our previous CN(0, 0) λ3883 spectra. We derive a solar carbon abundance of log A c = 8.30 ± 0.10 compared to the HSRA value of log A c = 8.55 ± 0.10. In addition we specify the regions of formation for the CN(0, 0) λ3883.35 and CN(1, 1) λ 3871.38 bandheads at disc center and limb.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号