首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   193篇
  免费   1篇
测绘学   4篇
大气科学   3篇
地球物理   42篇
地质学   70篇
海洋学   46篇
天文学   24篇
自然地理   5篇
  2022年   8篇
  2021年   10篇
  2020年   13篇
  2019年   6篇
  2018年   16篇
  2017年   10篇
  2016年   6篇
  2015年   2篇
  2014年   4篇
  2013年   10篇
  2012年   10篇
  2011年   5篇
  2010年   14篇
  2009年   3篇
  2008年   12篇
  2007年   22篇
  2006年   8篇
  2005年   1篇
  2004年   3篇
  2003年   7篇
  2002年   1篇
  2001年   1篇
  2000年   2篇
  1998年   2篇
  1997年   1篇
  1994年   1篇
  1991年   1篇
  1989年   1篇
  1988年   2篇
  1987年   1篇
  1986年   3篇
  1984年   2篇
  1983年   1篇
  1982年   1篇
  1976年   1篇
  1973年   2篇
  1968年   1篇
排序方式: 共有194条查询结果,搜索用时 15 毫秒
71.
72.
We discuss the results of metrological testing of a four-base acoustic current meter performed in a hydrodynamic basin, consider methodological problems encountered in the process of measurements and data processing, and present the experimental dependences of the systematic and random components of the measurement errors on the velocity and direction of the flow. Translated by Peter V. Malyshev and Dmitry V. Malyshev  相似文献   
73.
—We present a 2-D image of the upper mantle attenuation using nuclear explosion data from the ultra-long refraction/reflection profile "Quartz." Our analysis is based on a modified common spectrum technique followed by least-squares inversion for Q and iterative ray tracing in the velocity structure obtained earlier. The resulting attenuation structure corroborates the earlier model for northern Eurasia, as well as our recent estimate based on the analysis of the long-range P n phase, and provides significantly more detail than the existing models. The resulting upper mantle attenuation structure is characterised by Q values ranging from 400 to 1800. Down to the depths of 150–190, and probably 400 km, the attenuation increases horizontally in SE direction, away from the Baltic Shield. Our model exhibits strong 2-D, vertical and horizontal attenuation contrasts. A high-attenuation layer in the depth range of 120–150 to 160–180 km can apparently be associated with the presence of a partial melts within the base of the lithosphere.  相似文献   
74.
Abstract

The prospects for expanding the mineral resource base in many countries are linked with the exploration of stranded sites localized at unexplored areas with complex natural and landscape conditions that make any ground survey, including magnetic prospecting, difficult and expensive. The current level of geology requires high-precision and large-scale data at the first stages of geological exploration. Since 2012, technologies of aeromagnetic surveying with unmanned aircraft vehicles (UAV) enter the market, but most of them are based on big fixed-wing UAV and do not allow to substantially increase the level of survey granularity compared with traditional aerial methods. To increase the scale of survey, it is necessary to reduce the altitude and speed of flight, for which the authors develop the methodical and technical solutions described in this article. To obtain data at altitudes of 5 m above the terrain even in a rugged relief, we created heavy multirotor UAVs that are stable in flight and may be used in a wide range of environmental conditions (even a moderate snowfall), and develop a special software to generate flight missions on the basis of digital elevation models. A UAV has special design to reduce magnetic interference of the flight platform; the magnetic sensor is hung below the aircraft. This technology was conducted in a considerable amount of magnetic surveys in the mountainous regions of East Siberia between 2014 and 2016. The results of the comparison between airborne and ground surveys are presented, which show that the sensitivity of the developed system in conjunction with low-altitude measurements can cover any geologically significant anomalies of the magnetic field. An unmanned survey is cheaper and more productive; the multirotor-based technologies may largely replace traditional ground magnetic exploration in scales of 1:10,000?1:1000.  相似文献   
75.
The region of the junction and interaction between the East European Craton (EEC) and the West Arctic Craton (WAC) is regarded as a complexly built zone or assembly of both the volumetric and dividing linear tectonic elements: the Trollfjord–Rybachi–Kanin (TRK) Lineament, the pericratonic subsidence zone of the EEC, the Karpinskii Lineament, the Murmansk Block of the Fennoscandian (Baltic) Shield, and the Kolmozero–Voronya Zone, which are briefly characterized in this paper. Evidences of thrusting have been established not only in the TRK Suture Zone and on the Rybachi Peninsula, which represent a fragment of the Timanides fold–thrust belt, but also to the southwest, in the Upper Riphean and Vendian terrigenous sequences making up the Sredni Peninsula and related to the pericratonic trough of the VEC. Two phases of fold–thrust deformations with elements of left-lateral strike-slip offset pertaining to the activity and evolution of the lineament suture dividing the Sredni and Rybachi peninsulas have been recorded. The variously oriented fault–fold systems within this fault zone are evidence for multistage deformation and can be explained by an at least twostage change in the kinematics that control displacement along the fault. The disintegrated granitic massifs of the Archean crystalline basement tectonically squeezed out in the upper crust as protrusions are localized within TRK Fault Zone. Plagiogranitic bodies, which underwent superposed fault-fold deformations of both kinematic stages, are an evidence of the vigorous tectonic event that predated folding and two-stage strike-slip displacement along the TRK Fault—by thrusting of Riphean sequences from north to south toward the Archean craton. The nappe–thrust regional structure was formed at this stage; elements of it have been recognized in the Sredni, Rybachi, and Kanin peninsulas. The main stages of tectonic evolution in the junction zone between the EEC and the WAP have been revealed and substantiated.  相似文献   
76.
We studied the infrastructure of granite massifs of the Central Tien Shan and its correlation with the electric conductive layer of the upper crust, which made possible to reveal new peculiarities of the structure of the granite layer in the region and to clarify the nature of low resistivity layers.  相似文献   
77.
Data collected on a cruise in January 2008, using a laser optical plankton counter, conductivity–temperature–depth sensors, and a lowered acoustic Doppler current profiler, was used to study the mesoscale distribution and advection of overwintering Calanus finmarchicus in its deep water winter habitat off the shelf of northern Norway. The overwintering animals were generally located immediately below the Atlantic Water (AW) in Arctic Intermediate Water (AIW), in the 600–1200 m depth range. The depth of the interface between AW and AIW varied considerably in the area and this was clearly reflected in the C. finmarchicus distribution. Maximum abundance varied from about 80 ind m?3 to more than 200 ind m?3 at the different stations. Current measurements showed the richness of mesoscazle eddies, with speeds exceeding 70 cm s?1 at the surface and rapidly decreasing with depth. In the main overwintering layer the eddy features were also clearly seen, but with speeds generally below 20 cm s?1. C. finmarchicus were found in the whole survey area, but they were not homogeneously distributed. Advection of the copepods resulted in relatively high local rates of change in overwintering C. finmarchicus abundance with mean value of 8% per day in the area. It is clear that mesoscale physical processes greatly contribute to the variability in the abundance of overwintering C. finmarchicus off the shelf of northern Norway. The collected data are also a valuable addition to the generally sparse datasets on the C. finmarchicus winter distribution and the role of the Lofoten basin in the large scale system is also discussed.  相似文献   
78.
The structure of northerly overflow of Antarctic Bottom Water (AABW) through passages in the East Azores Ridge (37° N) in the East Atlantic from the Madeira Basin to the Iberian Basin is studied on the basis of hydrographic measurements carried out by the Institute of Oceanology, Russian Academy of Sciences (RAS) in October 2011, historical World Ocean Data Base 2009, and recent data on the bottom topography. The overflow of the coldest layers of this water occurs through two passages with close depths at 16° W (Discovery Gap) and at 19°30′ W (nameless Western Gap). It is shown that it is likely that the role of the latter passage in water transport was underestimated in earlier publications because the water (2.01°C) found in the region north of the Western Gap was cooler than in the region north of the Discovery Gap (2.03°C). In 2011, we found a decrease of 0.01°C in the AABW temperature near the bottom compared to previous measurements in 1982 (from 2.011°C to 2.002°C). Analysis of the historical database shows that this decrease is most likely caused by the cooling trend in the abyssal waters in the East Atlantic basins.  相似文献   
79.
For the first time, an acoustic Doppler current profiler (ADCP) produced by the RDI is used in the water area of the Black Sea in the lowered mode. This direction in the application of acoustic Doppler current profilers is now in the stage of development and verification of various procedures of measurements with subsequent data processing and enables one to get the distributions of current velocities down to depths of 1000–6000 m depending on the modification of the instrument. We describe the procedures of measurements performed with the help of the ADCP in the lowered mode in the course of an expedition and the stages of processing of the primary data based on the experience of application of similar acoustic current profilers at the Marine Hydrophysical Institute of the Ukrainian National Academy of Sciences accumulated in the 1980s. We generalize the experience of application of ADCP under the hydrological conditions of the Black Sea, propose the algorithms of data processing, present the profiles of absolute current velocity at several stations, compare these profiles with the geostrophic velocities, and determine the deep-water structure of the field of currents in a shelf-open-sea section made along 31.17°E. __________ Translated from Morskoi Gidrofizicheskii Zhurnal, No. 4, pp. 31–48, July–August, 2006.  相似文献   
80.
The SPR-N polarimeter onboard the CORONAS-F satellite allows the X-ray polarization degree to be measured in energy ranges of 20–40, 40–60, and 60–100 keV. To measure the polarization, the method based on the Thompson scattering of solar X-ray photons in beryllium plates was used; the scattered photons were detected with a system of six CsI(Na) scintillation sensors. During the observation period from August 2001 to January 2005, the SPR-N instrument detected the hard X-rays of more than 90 solar flares. The October 29, 2003, event showed a significant polarization degree exceeding 70% in channels of E = 40–60 and 60–100 keV and about 50% in the 20-to 40-keV channel. The time profile of the polarization degree and the projection of the polarization plane onto the solar disk were determined. For 25 events, the upper limits of the part of polarized X-rays were estimated at 8 to 40%. For all the flares detected, time profiles (with a resolution of up to 4 s), hard X-ray radiation fluxes, and spectral index estimates were obtained.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号