首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   131篇
  免费   2篇
  国内免费   2篇
大气科学   7篇
地球物理   29篇
地质学   33篇
海洋学   38篇
天文学   21篇
自然地理   7篇
  2024年   1篇
  2021年   3篇
  2018年   1篇
  2017年   2篇
  2016年   6篇
  2015年   2篇
  2014年   6篇
  2013年   7篇
  2012年   2篇
  2011年   2篇
  2010年   12篇
  2009年   11篇
  2008年   6篇
  2007年   8篇
  2006年   10篇
  2005年   6篇
  2004年   2篇
  2003年   5篇
  2002年   2篇
  2001年   2篇
  2000年   2篇
  1999年   3篇
  1998年   3篇
  1997年   1篇
  1995年   2篇
  1994年   7篇
  1992年   1篇
  1991年   2篇
  1990年   2篇
  1989年   1篇
  1988年   1篇
  1987年   1篇
  1986年   1篇
  1984年   3篇
  1983年   1篇
  1981年   2篇
  1980年   1篇
  1979年   1篇
  1978年   1篇
  1973年   1篇
  1971年   1篇
  1970年   1篇
排序方式: 共有135条查询结果,搜索用时 860 毫秒
101.
Interannual variations of the Hawaiian Lee Countercurrent (HLCC) in the 2000s were investigated using satellite and Argo profiling float observations. The satellite-observed sea surface height shows that the geostrophic eastward current was anomalously strong to the west away from Hawaii in 2003 and 2005. However, the trade winds and the orographic wind curl dipole in the lee of Hawaii that drives the climatological mean HLCC were not particularly strong in these years, suggesting that the accelerations of the HLCC were not caused by the wind stress curl forcing around Hawaii and subsequent Rossby wave propagation. Using Argo observations, we found negative potential vorticity (PV) anomalies in the subsurface north of the HLCC in these 2 years. The pycnocline is lifted northward as low PV waters of different densities stack up in the vertical, and the HLCC is then accelerated via the thermal wind. The intensification and/or southward intrusion of the eastern subtropical mode water and subtropical mode water seem to have induced negative PV anomalies in 2003 and 2005, respectively. Using high-resolution ocean simulations, we confirmed the migrations of PV anomalies and their contributions to the HLCC accelerations. Although the HLCC is located away from the cores of major mode waters, our results suggest that interannual variations of the HLCC are affected by those of mode waters.  相似文献   
102.
Effects of mesoscale eddies on the marine ecosystem in the Kuroshio Extension (KE) region are investigated using an eddy-resolving coupled physical-biological model. The model captures the seasonal and intra-seasonal variability of chlorophyll distribution associated with the mesoscale eddies, front variability, Kuroshio meanders, and upwelling. The model also reproduces the observed interannual variability of sea surface height anomaly (SSHA) in the KE region along a zonal band of 32–34°N from 2002 to 2006. The distribution of high surface chlorophyll corresponds to low SSHA. Cyclonic eddies are found to detach from the KE jet near 150°E and 158°E and propagate westward. The westward propagating cyclonic eddies lift the nutrient-rich thermocline into the euphotic zone and maintain high levels of chlorophyll in summer. In the subsurface layer, the pattern in chlorophyll is influenced by both lateral and vertical advection. In winter, convection inside the eddy entrains high levels of nutrients into the mixed layer, increasing production, and resulting in high chlorophyll concentration throughout the surface mixed layer. There is significant interannual variability in both the cyclonic eddy activity and the surface phytoplankton bloom south of the KE jet, although whether or not there is a causal link is unclear.  相似文献   
103.
An eddy-resolving multidecadal ocean model hindcast simulation is analyzed to investigate time-varying signals of the two recirculation gyres present respectively to the north and south of the Kuroshio Extension (KE) jet. The northern recirculation gyre (NRG), which has been detected at middepth recently by profiling float and moored current meter observations, is a major focus of the present study. Low-frequency variations in the intensity of the recirculation gyres are overall highly correlated with decadal variations of the KE jet induced by the basin-wide wind change. Modulation of the simulated mesoscale eddies and its relationship with the time-varying recirculation gyres are also evaluated. The simulated eddy kinetic energy in the upstream KE region is inversely correlated with the intensity of the NRG, consistent with previous observational studies. Eddy influence on the low-frequency modulation of the NRG intensity at middepth is further examined by a composite analysis of turbulent Sverdrup balance, assuming a potential vorticity balance between the mean advection and the convergent eddy fluxes during the different states of the recirculation gyre. The change in the NRG intensity is adequately explained by that inferred by the turbulent Sverdrup balance, suggesting that the eddy feedback triggers the low-frequency modulation of the NRG intensity at middepth.  相似文献   
104.
We investigate the relationship between sea surface temperature (SST) cooling and upwelling along Papua New Guinea’s (PNG) north coast before the onset of El Niño events using a hindcast experiment with a high-resolution ocean general circulation model. Coastal upwelling and related SST cooling appear along PNG north coast during the boreal winter before the onsets of six El Niño events occurring during 1981–2005. Relatively cool SSTs appear along PNG north coast during that time, when anomalous northwesterly surface wind stress, which can cause coastal upwelling by offshore Ekman transport appearing over the region. In addition, anomalous cooling tendencies of SST are observed, accompanying anomalous upward velocities at the base of the mixed layer and shallow anomalies of 27°C isotherm depth. It is also shown that entrainment cooling plays an important role in the cooling of the mixed layer temperature in this region.  相似文献   
105.
We present the first sulfur and oxygen isotopic data for tephra from the catastrophic 1883 eruption of Krakatau. Sulfur isotopic ratios in unaltered Krakatau tephra erupted August 26–27, 1883 are markedly enriched in 34S relative to mantle sulfur. High δ34S values of +6.3 to +16.4‰ can best be explained by open-system or multi-stage degassing of SO2 from the oxidized rhyodacitic and gray dacitic magmas with 34S enrichment of SO2−4 remaining in the melt. Lower whole-rock δ34S values of +2.6‰ and +4.0‰ in two oxidized gray dacitic samples indicate more primitive subarc mantle sulfur in the 1883 magma chamber. Initial δ34S of the rhyodacitic magma was probably in the +1.5‰ to +4.0‰ range and similar to δ34S values measured in arc volcanic rocks from the Mariana Arc.  相似文献   
106.
The annual transport of anthropogenic carbon (Canth) to the North Pacific Intermediate Water (NPIW) from the Western Subarctic Gyre (WSG) has been re-estimated by using newly estimated Oyashio transport and Canth concentration, the latter calculated by the recently-established “ΔC*” method with some modifications. Estimated annual Canth transport through the nearshore Oyashio west of 146°E was 0.020 ± 0.010 GtC y−1, closely approximating the previous estimation based on a 1-D model calibrated with the CFC vertical distribution. The present study, however, found that an additional 0.025 ± 0.010 GtC y−1 of Canth was transported into NPIW in the region east of 146°E. Total Canth transport, 0.045 GtC y−1, contributes about 35% of annual Canth accumulation of the whole temperate North Pacific. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   
107.
Many coupled general circulation models (CGCMs) suffer from serious model bias in the zonal gradient of sea surface temperature (SST) in the equatorial Atlantic. The bias of the equatorial Atlantic SST (EASST) may affect the interannual variability of the equatorial Atlantic, which in turn may influence the state of the tropical Pacific. In this paper we investigate the impact of the bias and the interannual variability of the EASST on the tropical Pacific in a CGCM. To determine the impact of the interannual variability of the EASST on the tropical Pacific, we compare a run in a fully coupled mode (CTL run) and a run in which the EASST is nudged toward the climatological monthly mean of the SST in the CTL run, but full air-sea coupling is allowed elsewhere (AT_m run). We find that, when the interannual variability of the EASST is excluded, the thermocline depth in the eastern equatorial Pacific is deepened, and the amplitude of the El Niño/Southern Oscillation is reduced by 30 % compared to the CTL run. The impact of the bias of the EASST on the tropical Pacific is investigated by comparing the AT_m run and a run in which the EASST is nudged toward the observed climatological monthly mean SST (AT_o run). It is found that, when the bias of the EASST is removed (i.e. AT_o run), the Gill–Matsuno type response to the warm SST anomalies in the western equatorial Atlantic induces low-level cyclonic anomalies in the eastern South Pacific, which leads to a deeper thermocline and colder SST in the South Pacific as compared to AT_m. The colder SST in the South Pacific reduces the precipitation along the South Pacific convergence zone. Our results of the model experiments demonstrate the importance of the EASST to the tropical Pacific climate.  相似文献   
108.
Evaluation of the extent of volatile element recycling in convergent margin volcanism requires delineating likely source(s) of magmatic volatiles through stable isotopic characterization of sulfur, hydrogen and oxygen in erupted tephra with appropriate assessment of modification by degassing. The climactic eruption of Mt. Mazama ejected approximately 50 km3 of rhyodacitic magma into the atmosphere and resulted in formation of a 10-km diameter caldera now occupied by Crater Lake, Oregon (lat. 43°N, long. 122°W). Isotopic compositions of whole-rocks, matrix glasses and minerals from Mt. Mazama climactic, pre-climactic and postcaldera tephra were determined to identify the likely source(s) of H2O and S. Integration of stable isotopic data with petrologic data from melt inclusions has allowed for estimation of pre-eruptive dissolved volatile concentrations and placed constraints on the extent, conditions and style of degassing.Sulfur isotope analyses of climactic rhyodacitic whole rocks yield δ34S values of 2.8-14.8‰ with corresponding matrix glass values of 2.4-13.2‰. δ34S tends to increase with stratigraphic height through climactic eruptive units, consistent with open-system degassing. Dissolved sulfur concentrations in melt inclusions (MIs) from pre-climactic and climactic rhyodacitic pumices varies from 80 to 330 ppm, with highest concentrations in inclusions with 4.8-5.2 wt% H2O (by FTIR). Up to 50% of the initial S may have been lost through pre-eruptive degassing at depths of 4-5 km. Ion microprobe analyses of pyrrhotite in climactic rhyodacitic tephra and andesitic scoria indicate a range in δ34S from −0.4‰ to 5.8‰ and from −0.1‰ to 3.5‰, respectively. Initial δ34S values of rhyodacitic and andesitic magmas were likely near the mantle value of 0‰. Hydrogen isotope (δD) and total H2O analyses of rhyodacitic obsidian (and vitrophyre) from the climactic fall deposit yielded values οf −103 to −53‰ and 0.23-1.74 wt%, respectively. Values of δD and wt% H2O of obsidian decrease towards the top of the fall deposit. Samples with depleted δD, and mantle δ18O values, have elevated δ34S values consistent with open-system degassing. These results imply that more mantle-derived sulfur is degassed to the Earth’s atmosphere/hydrosphere through convergent margin volcanism than previously attributed. Magmatic degassing can modify initial isotopic compositions of sulfur by >14‰ (to δ34S values of 14‰ or more here) and hydrogen isotopic compositions by 90‰ (to δD values of −127‰ in this case).  相似文献   
109.
110.
Uranium and thorium isotopes in an 81-m long sediment core (HDP-04) of Lake Hovsgol, Mongolia, were measured to investigate their downcore distributions and to explore potential linkage to paleoenvironmental changes. Three-dimensional isochron techniques using isotope-ratio diagrams in 238U–234U–230Th–232Th system presented by Ludwig and Titterington were applied to age date the lake sediments at the depths of 11.42, 14.71 and 14.83 m in the HDP-04 section, the estimated ages of these horizons are 66 ± 8, 122 ± 11 and 128 ± 22 ka, respectively. The 238U concentration throughout the entire section fluctuated by a factor of 12, ranging from 19.9 to 232.1 mBq/g with anomalously high 238U peak at 23.8 m in depth, while the 232Th concentration varied only by a factor of about two between 24.3 and 54.0 mBq/g. The discrimination of the bulk 238U into authigenic and terrigenous 238U fractions was attempted, based on the measured 232Th as a correction index for terrigenous materials. In the upper 24 m corresponding to the last 250 ka, the authigenic 238U was higher in interglacials and lower in glacials. This depth profile of authigenic 238U contents was almost identical pattern with that found in a sediment core (VER98-1-6) from the Academician Ridge, Lake Baikal. Further, this profile can be correlated well with that of photosynthetic pigment contents, one of proxies of paleoproductivity, suggesting that the variation of authigenic 238U contents were associated with the environmental change around Lake Hovsgol.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号