首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   25891篇
  免费   467篇
  国内免费   213篇
测绘学   520篇
大气科学   1939篇
地球物理   5199篇
地质学   9057篇
海洋学   2106篇
天文学   6017篇
综合类   47篇
自然地理   1686篇
  2021年   161篇
  2020年   197篇
  2019年   209篇
  2018年   497篇
  2017年   463篇
  2016年   566篇
  2015年   436篇
  2014年   606篇
  2013年   1211篇
  2012年   731篇
  2011年   1015篇
  2010年   875篇
  2009年   1219篇
  2008年   1052篇
  2007年   1054篇
  2006年   978篇
  2005年   818篇
  2004年   839篇
  2003年   800篇
  2002年   740篇
  2001年   688篇
  2000年   636篇
  1999年   572篇
  1998年   576篇
  1997年   576篇
  1996年   440篇
  1995年   419篇
  1994年   380篇
  1993年   335篇
  1992年   311篇
  1991年   276篇
  1990年   304篇
  1989年   281篇
  1988年   235篇
  1987年   311篇
  1986年   257篇
  1985年   346篇
  1984年   384篇
  1983年   371篇
  1982年   335篇
  1981年   310篇
  1980年   312篇
  1979年   282篇
  1978年   311篇
  1977年   263篇
  1976年   267篇
  1975年   275篇
  1974年   234篇
  1973年   238篇
  1972年   158篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
471.
The power-law exponent (n) in the equation: D=cL n , with D = maximum displacement and L = fault length, would be affected by deviations of fault trace length. (1) Assuming n=1, numerical simulations on the effect of sampling and linkage on fault length and length–displacement relationship are done in this paper. The results show that: (a) uniform relative deviations, which means all faults within a dataset have the same relative deviation, do not affect the value of n; (b) deviations of the fault length due to unresolved fault tip decrease the values of n and the deviations of n increase with the increasing length deviations; (c) fault linkage and observed dimensions either increase or decrease the value of n depending on the distribution of deviations within a dataset; (d) mixed deviations of the fault lengths are either negative or positive and cause the values of n to either decrease or increase; (e) a dataset combined from two or more datasets with different values of c and orders of magnitude also cause the values of n to deviate. (2) Data including 19 datasets and spanning more than eight orders of fault length magnitudes (10−2–105 m) collected from the published literature indicate that the values of n range from 0.55 to 1.5, the average value being 1.0813, and the peak value of n d (double regression) is 1.0–1.1. Based on above results from the simulations and published data, we propose that the relationship between the maximum displacement and fault length in a single tectonic environment with uniform mechanical properties is linear, and the value of n deviated from 1 is mainly caused by the sampling and linkage effects.  相似文献   
472.
A new generation of Earth gravity field models called GGM02 are derived using approximately 14 months of data spanning from April 2002 to December 2003 from the Gravity Recovery And Climate Experiment (GRACE). Relative to the preceding generation, GGM01, there have been improvements to the data products, the gravity estimation methods and the background models. Based on the calibrated covariances, GGM02 (both the GRACE-only model GGM02S and the combination model GGM02C) represents an improvement greater than a factor of two over the previous GGM01 models. Error estimates indicate a cumulative error less than 1 cm geoid height to spherical harmonic degree 70, which can be said to have met the GRACE minimum mission goals. Electronic Supplementary Material Supplementary material is available in the online version of this article at  相似文献   
473.
The authors propose the use of a high-speed interferometric radar for remotely measuring both transient displacements and steady-state vibrations of architectural heritage structures in order to test their stability conditions. Demonstrative results of application of the technique to a prominent cultural heritage artwork, the tower of Giotto in Florence, Italy, are reported.  相似文献   
474.
This letter proposes an estimation of microwave transmissivity within the Canadian boreal forest. The aim is to correct the forest effect in snow water equivalent estimation from Special Sensor Microwave Imager and Advanced Microwave Scanning Radiometer microwave measurements. The estimation was carried out using ground-based radiometric measurements, at 19 and 37 GHz, and for both polarizations. The results show that the transmissivity is correlated with the stem volume and is independent of the tree species. For high stem volumes (>100 m/sup 3//ha), the transmissivity is found to be 0.4 and 0.3 for 19 and 37 GHz, respectively.  相似文献   
475.
476.
Summary The uncertainty in aerosol size distributions is a main source of errors in aerosol optical thickness determined from satellite measurements. To reduce the errors resulting from the uncertainty in aerosol size distributions, we have performed sensitivity analyses. It is found the errors resulting from the uncertainty in aerosol size distribution can be considerably reduced by using the Junge power law to approximate the aerosol size distribution in an actual atmosphere, if the exponent value is determined at the same time. An iterative algorithm is then developed for the simultaneous determination of aerosol optical thickness and the exponent of the Junge power law over ocean areas from the upwelling radiances measured in AVHRR visible and near infrared channels. A number of numerical experiments are carried out to investigate the validity of the Junge power law approximation by assuming the aerosol size distributions in an actual atmosphere are bimodal with different mode parameters, and by using the actual aerosol size distributions determined at several places by Kaufman et al. (1994). The results show that the errors in determined aerosol optical thickness resulting from the Junge power law approach are significantly reduced. The iterative algorithm is investigated further by comparing the aerosol optical thickness deduced from satellite measurement with that observed by a sun photometer. Received October 10, 2001 Revised December 28, 2001  相似文献   
477.
Summary ?For the LITFASS-98 experiment, from June 1 until June 30, 1998, the spatially resolved insolation at surface could be computed from NOAA-14 AVHRR data applying the modular analysis scheme SESAT (Strahlungs- und Energiebilanzen aus Satellitendaten). The satellite inferred insolation for this period shows for clear-sky regions a good agreement with surface based observations with a rms error of 76 Wm−2. For cloudy conditions the insolation is overestimated with respect to ground based observations, with a rms error between 83 and 118 Wm−2, depending on the cloud optical thickness. This overestimation can be explained by the surface heterogeneity, leading to underestimated cloud optical thickness, and also by a fixed relative humidity below clouds (55%, dry atmosphere) and a fixed horizontal visibility (50 km, clear atmosphere). A detailed study of comparable scales in space and time, considering the different observation geometries and sampling intervals, shows that a 30 min ground based observation can be compared with a 8 × 8 km2 mean by the satellite data. Received July 12, 2001; revised April 29, 2002; accepted June 7, 2002  相似文献   
478.
Summary ?Retrievals of atmospheric aerosol optical thickness are highly dependent on the choice of the class describing the aerosol properties leading to significant errors while using classes available in the literature. High spectral resolution measurements from GOME (Global Ozone Monitoring Experiment) between the ultraviolet and the near infrared can be used for an accurate characterization of the aerosol optical properties. The radiometer MVIRI (METEOSAT Visible and Infrared Imager) on board the geostationary satellite METEOSAT, while being equipped only with broadband VIS channel, ensures an adequate half-hourly monitoring of the atmospheric conditions over a large portion of the Earth. The present algorithm is based on a combination of data from both sensors for the retrieval of the aerosol optical thickness at the reference wavelength of 0.55 μm (AOT). A case of a desert dust outbreak from the African continent over the Atlantic Ocean is examined. AOT values obtained using a priori fixed classes taken from the literature are compared with those retrieved with this algorithm using the GOME-derived classes. Systematic differences of the order of a few tenths on average are found which remain significant also after considering the measurement errors. This represents a novelty introduced by the synergetic use of both sensors. Received March 13, 2002  相似文献   
479.
During an international workshop at the Institute for Experimental Physics of the University of Vienna, Austria, which was coordinated within the Committee on Nucleation and Atmospheric Aerosols (IAMAS-IUGG), 10 instruments for aerosol number concentration measurement were studied, covering a wide range of methods based on various different measuring principles. In order to investigate the detection limits of the instruments considered with respect to particle size, simultaneous number concentration measurements were performed for monodispersed aerosols with particle sizes ranging from 1.5 to 50 nm diameter and various compositions.The instruments considered show quite different response characteristics, apparently related to the different vapors used in the various counters to enlarge the particles to an optically detectable size. A strong dependence of the 50% cutoff diameter on the particle composition in correlation with the type of vapor used in the specific instrument was found. An enhanced detection efficiency for ultrafine hygroscopic sodium chloride aerosols was observed with water operated systems, an analogous trend was found for n-butanol operated systems with nonhygroscopic silver and tungsten oxide particles.  相似文献   
480.
Most current methods of design for concrete structures under earthquake loads rely on highly idealized ‘equivalent’ static representations of the seismic loads and linear‐elastic methods of structural analysis. With the continuing development of non‐linear methods of dynamic analysis for the overload behaviour and collapse of complete concrete structures, a more direct and more accurate design procedure becomes possible which considers conditions at system collapse. This paper describes an evaluation procedure that uses non‐linear dynamic collapse–load analysis together with global safety coefficients. A back‐calibration procedure for evaluating the global safety coefficients is also described. The aim of this paper is to open up discussion of alternative methods of design with improved accuracy which are necessary to move towards a direct collapse–load method of design. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号