首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1239篇
  免费   48篇
  国内免费   15篇
测绘学   39篇
大气科学   87篇
地球物理   328篇
地质学   357篇
海洋学   76篇
天文学   276篇
综合类   7篇
自然地理   132篇
  2023年   7篇
  2021年   15篇
  2020年   20篇
  2019年   23篇
  2018年   21篇
  2017年   33篇
  2016年   25篇
  2015年   26篇
  2014年   41篇
  2013年   60篇
  2012年   57篇
  2011年   63篇
  2010年   51篇
  2009年   84篇
  2008年   59篇
  2007年   65篇
  2006年   51篇
  2005年   39篇
  2004年   43篇
  2003年   39篇
  2002年   51篇
  2001年   25篇
  2000年   21篇
  1999年   21篇
  1998年   32篇
  1997年   23篇
  1996年   15篇
  1995年   21篇
  1994年   13篇
  1993年   11篇
  1992年   15篇
  1991年   10篇
  1990年   14篇
  1989年   13篇
  1988年   10篇
  1987年   11篇
  1986年   11篇
  1985年   18篇
  1984年   5篇
  1983年   5篇
  1982年   16篇
  1981年   14篇
  1979年   8篇
  1978年   7篇
  1977年   11篇
  1976年   15篇
  1975年   8篇
  1974年   9篇
  1971年   7篇
  1970年   7篇
排序方式: 共有1302条查询结果,搜索用时 781 毫秒
991.
FIEDLER and SCHIMMING (1983) proved that the fourth order gravitational field equations with a linear combination of Bach's and Einstein's tensors on the left-hand side, which were proposed by TREDER , admit static centrally symmetric solutions which are analytical and non-flat in some neighbourhood of the centre of symmetry. The existence of these solutions, known at first only in a small neighbourhood of r = o (r radius), can now be extended to intervals o ≦ r ≦ α with arbitrarily large α , using the abstract theorem on inverse functions. Further it is proved that the Schwarzschild metrics are in a certain sense the only solutions of the above equations that are analytic, asymptotically flat, static and centrally symmetric around r = +∞.  相似文献   
992.
993.
For the minimally coupled scalar field in Einstein's theory of gravitation we look for the space of solutions within the class of closed Friedmann universe models. We prove D ≥ 1, where D ≥ is the dimension of the set of solutions which can be integrated up to t → ∞ (D > 0 was conjectured by PAGE (1984)). We discuss concepts like “the probability of the appearance of a sufficiently long inflationary phase” and argue that it is primarily a probability measure μ in the space V of solutions (and not in the space of initial conditions) which has to be applied. μ is naturally defined for Bianchi-type I cosmological models because V is a compact cube. The problems with the closed Friedmann model (which led to controversial claims in the literature) will be shown to originate from the fact that V has a complicated non-compact non-Hausdorff Geroch topology: no natural definition of μ can be given. We conclude: the present state of our universe can be explained by models of the type discussed, but thereby the anthropic principle cannot be fully circumvented.  相似文献   
994.
995.
996.
997.
We present the geochemistry and intrusion pressures of granitoids from the Kohistan batholith, which represents, together with the intruded volcanic and sedimentary units, the middle and upper arc crust of the Kohistan paleo-island arc. Based on Al-in-hornblende barometry, the batholith records intrusion pressures from ~0.2 GPa in the north (where the volcano-sedimentary cover is intruded) to max. ~0.9 GPa in the southeast. The Al-in-hornblende barometry demonstrates that the Kohistan batholith represents a complete cross section across an arc batholith, reaching from the top at ~8–9 km depth (north) to its bottom at 25–35 km (south-central to southeast). Despite the complete outcropping and accessibility of the entire batholith, there is no observable compositional stratification across the batholith. The geochemical characteristics of the granitoids define three groups. Group 1 is characterized by strongly enriched incompatible elements and unfractionated middle rare earth elements (MREE)/heavy rare earth element patterns (HREE); Group 2 has enriched incompatible element concentrations similar to Group 1 but strongly fractionated MREE/HREE. Group 3 is characterized by only a limited incompatible element enrichment and unfractionated MREE/HREE. The origin of the different groups can be modeled through a relatively hydrous (Group 1 and 2) and of a less hydrous (Group 3) fractional crystallization line from a primitive basaltic parent at different pressures. Appropriate mafic/ultramafic cumulates that explain the chemical characteristics of each group are preserved at the base of the arc. The Kohistan batholith strengthens the conclusion that hydrous fractionation is the most important mechanism to form volumetrically significant amounts of granitoids in arcs. The Kohistan Group 2 granitoids have essentially identical trace element characteristics as Archean tonalite–trondhjemite–granodiorite (TTG) suites. Based on these observations, it is most likely that similar to the Group 2 rocks in the Kohistan arc, TTG gneisses were to a large part formed by hydrous high-pressure differentiation of primitive arc magmas in subduction zones.  相似文献   
998.
Two submarine hydrothermal vent fields at 5°S, Mid-Atlantic Ridge (MAR) - Turtle Pits and Comfortless Cove - emanate vapor-phase fluids at conditions close to the critical point of seawater (407 °C, 298 bars). In this study, the concentration and distribution of rare earth element (REE) and yttrium (Y) has been investigated. Independent of the major element composition, the fluids display a strong temporal variability of their REE + Y concentrations and relative distributions at different time scales of minutes to years. Chondrite-normalized distributions range from common fluid patterns with light REE enrichment relative to the heavy REE, accompanied by positive Eu anomalies (type I), to strongly REE + Y enriched patterns with a concave-downward distribution with a maximum enrichment of Sm and weakly positive or even negative Eu anomalies (type II). The larger the sum of REE, the smaller CeCN/YbCN and Eu/Eu∗. We also observed a strong variability in fluid flow and changing fluid temperatures, correlating with the compositional variability.As evident by the positive correlation of total REE, Ca, and Sr concentrations in Turtle Pits and Comfortless Cove fluids, precipitation/dissolution of hydrothermal anhydrite controls the variability in REE concentrations and distributions in these fluids and the transformation of one fluid type to the other. The variable distribution of REE can be explained by the accumulation of particulate anhydrite (with concave-downward REE distribution and negative Eu anomaly) into a fluid with common REE distribution (type I), followed by the modification of the REE fluid signature due to dissolution of incorporated anhydrite. A second model, in which the type II fluids represent a primary REE reaction zone fluid pattern, which is variably modified by precipitation of anhydrite, can also explain the observed correlations of total REE, fractionation of LREE/HREE and size of Eu anomaly as well as Ca, Sr. The emanation of such a fluid may be favored in a young hydrothermal system in its high-activity phase with short migration paths and limited exchange with secondary minerals. However, this model is not as well constrained as the other and requires further investigations.The strongly variable REE fluid signature is restricted to the very hot, actively phase-separating hydrothermal systems Turtle Pits and Comfortless Cove at 5°S and has not been observed at the neighboring Red Lion vent field, which continuously emanates 350 °C hot fluid and displays a stable REE distribution (type I).  相似文献   
999.
The ages of Indian carbonatites are still controversial. Most of the earlier datings were done by K/Ar methods. We therefore analysed Pb/Pb ratios in carbonatites from carbonatite-alkalic complexes of Newania (NW India, Rajasthan State) and Sevattur (SW India, Tamil Nadu State) to constrain the age and geological history of these rocks. Newania carbonatites are intrusive into Precambrian Untala granite-gneiss and mainly dolomitic in composition (rauhaugite) followed by a later phase of ankerite carbonatite, while thin calcite carbonatite (sövite) dykelets are the youngest in the sequence. The analysed whole-rock samples are characterised by 206Pb/204Pb ratios between 60 and 176 and 207Pb/204Pb ratios between 22 and 40, which are extremely high in comparison to common igneous rocks and even for carbonatite compositions. One sample, New 37, shows the extreme ratios of 206Pb/204Pb = 574 and 207Pb/204Pb = 73. This requires a μ-value of about 2000 for the last 1550 Ma. If the samples are classified according to their petrographic/geochemical characteristics this results in an isochron age of 1551 ± 46 Ma for the ankerite carbonatites (six samples). The dolomites (6 samples) yield an isochron age of 2.27 Ga. Although these results fit quite well into the geological evolution scheme of the area, the extreme long age hiatus between dolomite carbonatite and ferrocarbonatite formation events raises severe problems for their petrologic interpretation.

The Proterozoic Sevattur carbonatite complex (SCC, Tamil Nadu) was emplaced contemporaneously with a large number of carbonatite complexes within the Precambrian gneissic terrane of the Eastern Ghats Mobile Belt. The main mass is composed of dolomite carbonatite (rauhaugite) with a few dikes of calcite carbonatite (sövite) and ankerite carbonatite within it. All eight samples together yield an isochron of 805 ± 10 Ma. This isochron is mainly determined on ankerite carbonatites with μ-values up to 1900 for the last 800 Ma. Taking only ankerite carbonatites into account, the resulting age is 801 ± 11 Ma. The 206Pb/204Pb and 207Pb/204Pb ratios of these samples are similar to the main group of Newania and far beyond the isotopic composition of common igneous rocks.

Our investigations show that in carbonatitic rock systems extremely high lead isotopic ratios can be established due to the crystallization of uranium-rich mineral phases. In both cases the observed high to extremely high initial Pb isotope ratios require the residence of the lead in intermediate high-μ reservoirs either within the upper mantle or the crust prior to the carbonatite formation. A high-temperature event, which completely reset the Rb/Sr and K/Ar isotopic systems of Nevania carbonatites, seems to have no influence on the lead isotopic systematics.  相似文献   

1000.
This paper investigates the effect of rainstorm movement on the peak discharge response (PDR) of drainage networks by comparing it with the corresponding equivalent stationary and uniform rainfall. A synthetic circular watershed is introduced to avoid biases from interaction between catchment geometry and storm orientation. The drainage network of the watershed is simulated by the Gibbsian model to examine the effect of network configuration on the peak response depending on the storm kinematics. This study utilizes two types of the equivalent stationary storm (ESS): the average rainfall intensity over the entire catchment (ESSAV) and the point stationary rainfall intensity (ESSQ) to evaluate the effect of moving rainstorms in terms of the PDR. The results show that there exists an interval in which the same rainfall duration produces higher peak responses for moving storms compared with ESSQ. The augmentation of the peak response by moving rainstorm is dependent on the relative rainstorm speed, size, and direction as well as drainage network configuration of the catchment; especially, the results show that a less efficient network tends to mitigate the effect of rainstorm movement on peak response. In contrast, a more efficient network is more sensitive to storm kinematics and the peak response increases compared with ESS. Therefore, the results in this study imply a potential improvement in urban drainage networks in terms of efficiency as well as safety to moving rainstorms. Also, this study suggests the range of variation in peak flows due to storm kinematics compared with the ESS, which can be a reference to the current design practices.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号