首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1239篇
  免费   48篇
  国内免费   15篇
测绘学   39篇
大气科学   87篇
地球物理   328篇
地质学   357篇
海洋学   76篇
天文学   276篇
综合类   7篇
自然地理   132篇
  2023年   7篇
  2021年   15篇
  2020年   20篇
  2019年   23篇
  2018年   21篇
  2017年   33篇
  2016年   25篇
  2015年   26篇
  2014年   41篇
  2013年   60篇
  2012年   57篇
  2011年   63篇
  2010年   51篇
  2009年   84篇
  2008年   59篇
  2007年   65篇
  2006年   51篇
  2005年   39篇
  2004年   43篇
  2003年   39篇
  2002年   51篇
  2001年   25篇
  2000年   21篇
  1999年   21篇
  1998年   32篇
  1997年   23篇
  1996年   15篇
  1995年   21篇
  1994年   13篇
  1993年   11篇
  1992年   15篇
  1991年   10篇
  1990年   14篇
  1989年   13篇
  1988年   10篇
  1987年   11篇
  1986年   11篇
  1985年   18篇
  1984年   5篇
  1983年   5篇
  1982年   16篇
  1981年   14篇
  1979年   8篇
  1978年   7篇
  1977年   11篇
  1976年   15篇
  1975年   8篇
  1974年   9篇
  1971年   7篇
  1970年   7篇
排序方式: 共有1302条查询结果,搜索用时 427 毫秒
31.
Fluxes of Sr into the headwaters of the Ganges   总被引:1,自引:0,他引:1  
Himalayan weathering is recognized as an important agent in modifying sea water chemistry, but there are significant uncertainties in our understanding of Himalayan riverine fluxes. This paper examines causes of the variability, including that of the seasons, by analysis of downstream variations in Sr, 87Sr, and major ions in the mainstream, in relation to the composition of tributary streams from subcatchments with differing geologic substrates.Water samples were collected over four periods spanning the premonsoon, monsoon, and postmonsoon seasons. Uncertainties in the relative fluxes have been estimated, using Monte Carlo techniques, from the short-term variability of mainstream chemistry and the scatter of tributary compositions. The results show marked seasonal variations in the relative inputs related to high monsoon rainfall in the High and Lesser Himalaya, contrasting with the major contribution from glacial melt waters from the Tibetan Sedimentary Series (TSS) at times of low rainfall. Much of the spread in previously published estimates of the sources of Sr in Himalayan rivers may result from these seasonal variations in Sr fluxes.The annual fluxes of Sr into the headwaters of the Ganges are derived from the three main tectonic units in the proportions 35 ± 1% from the TSS, 27 ± 3% from the High Himalayan Crystalline Series (HHCS), and 38 ± 8% from the Lesser Himalaya. The particularly elevated 87Sr/86Sr ratios characteristic of the HHCS and the Lesser Himalaya enhance their influence on seawater Sr-isotope composition. The TSS contributes 13 ± 1%, the HHCS 30 ± 3%, and the Lesser Himalaya 57 ± 11% of the 87Sr flux in excess of the seawater 87Sr/86Sr ratio of 0.709.  相似文献   
32.
Summary ?Using the data of 6 automatic heat balance observation (AWS) stations and a data set of 52 surface observation stations over the Qinghai-Tibetan Plateau (“the Plateau”) and surroundings, the horizontal distribution is studied of “apparent atmospheric heat sources” 〈Q 1〉 and of “apparent atmospheric moisture sinks” 〈Q 2〉. The AWS stations were established during the period May to August 1998 of the Tibetan Plateau Meteorological Experiment (second TIPEX) by a cooperation of China and Japan. For this period the Plateau mean of 〈Q 1〉 is positive. Its value of 74 W/m2 is a little greater than a climate value and than values from MONEX and the first TIPEX in 1979, respectively. Also the corresponding 〈Q 2〉 is positive. Hence during that time the Plateau is a heat source and a moisture sink. A day-to-day change of 〈Q 1〉 and 〈Q 2〉 is more pronounced over the middle and east part of the Plateau than over the west part. Diagnostics accompanied by numerical simulations are used to study the daily relationship between 〈Q 1〉 over the Plateau and the weather over China and Asia for this summer. The results suggest that 〈Q 1〉 may affect precipitation over northern China and position of the west Pacific subtropical high. Abnormal southward retreat of this Pacific high seems to have caused the second flood over the middle and lower Yangtse river basin in July. Received May 20, 2001; revised February 2, 2002  相似文献   
33.
Wide-angle seismic velocities in heterogeneous crust   总被引:5,自引:0,他引:5  
Seismic velocities measured by wide-angle surveys are commonly used to constrain material composition in the deep crust. Therefore, it is important to understand how these velocities are affected by the presence of multiscale heterogeneities. The effects may be characterised by the scale of the heterogeneity relative to the dominant seismic wavelength (λ); what is clear is that heterogeneities of all scales and strengths bias wide-angle velocities to some degree. Waveform modelling was used to investigate the apparent wide-angle P -wave velocities of different heterogeneous lower crusts. A constant composition (50 per cent felsic and 50 per cent ultramafic) was formed into a variety of 1- and 2-D heterogeneous arrangements and the resulting wide-angle seismic velocity was estimated. Elastic, 1-D models produced the largest velocity shift relative to the true average velocity of the medium (which is the velocity of an isotropic mixture of the two components). Thick (width > λ) horizontal layers, as a result of Fermat's Principle, provided the largest increase in velocity; thin (width ≪λ) vertical layers produced the largest decrease in velocity. Acoustic 2-D algorithms were shown to be inadequate for modelling the kinematics of waves in bodies with multiscale heterogeneities. Elastic, 2-D modelling found velocity shifts (both positive and negative) that were of a smaller magnitude than those produced by 1-D models. The key to the magnitude of the velocity shift appears to be the connectivity of the fast (and/or slow) components. Thus, the models with the highest apparent levels of connectivity between the fast phases, the 1-D layers, produced the highest-magnitude velocity shifts. To understand the relationship between measured seismic velocities and petrology in the deep crust it is clear that high-resolution structural information (which describes such connectivity) must be included in any modelling.  相似文献   
34.
35.
New pole positions for Triassic and Cretaceous times have been obtained from volcanic and sedimentary sequences in Central Iran. These new results confirm the general trend of the Apparent Polar Wander Path (APWP) of the Central-East-Iran microplate (CEIM) from the Triassic through the Tertiary as published by Soffel and Förster (1983, 1984). Two new palaeopoles for the Triassic of the CEIM have been obtained; limestones and tuffs from the Nakhlak region yield a mean direction of 094.0°/25.0°, N=12, k=4.1,α 95=24.7°, after bedding correction, corresponding to a palaeopole position of 310.8°E; 3.9°S, and volcanic rocks from the Sirjan regions yield a mean direction of 114.5°/35.1°, N=44, k=45.9,α 95=3.2° after bedding correction and a palaeopole position of 295.8°E; 10.3°N. Combining these with the two previously published results yields a new palaeopole position of 317.5°E; 12.7°N, for the Triassic of the CEIM, thus confirming that large counterclockwise rotations of the CEIM have occurred since the Triassic time. New results have also been obtained from Cretaceous limestones from the Saghand region of the CEIM. The mean direction of 340.7°/26.3°, N=33, k=44.3,α 95=3.8°, and the corresponding palaeopole position of 283.1°E; 64.4°N, is in agreement with previously determined Cretaceous palaeopole positions of the CEIM. Furthermore, results have also been obtained from Triassic dolomite, limestone, sandstone and siltstone from the Natanz region, which is located to the west of the CEIM. A total of 161 specimens from 44 cores taken at five sites gave a mean direction of the five sites at 033.3°/25.1°, N=5, k=69.0,α 95=9.3° and a palaeopole position of 167.2°E; 53.7°N. They pass the positive fold test of McElhinny (1964) on the level of 99% confidence. This pole position is in fairly good agreement with the mean Triassic pole position of the Turan Plate (149°E; 49°N). It indicates that the area of Natanz has not undergone the large counterclockwise rotation relative to the Turan plate since the Triassic, which has been shown for the CEIM. A Triassic palaeogeographic reconstruction of Iran, Arabia (Gondwana) and the Turan Plate (Eurasia) is also presented.  相似文献   
36.
In many instances hydrogeological parameters obtained by conventional methods for selected localities within an aquifer or an aquitard are not sufficient for adequate regionalization at the scale of the entire layer. Here, we demonstrate an application of the fuzzy kriging method in regionalization of hydrogeological data, in which the set of conventional, crisp values is supplemented by imprecise information subjectively estimated by an expert. It is believed that such an approach eventually may reflect the real-world conditions more closely than a traditional crisp-value approach, because the former does not impose exactness artificially on phenomena which are diffuse by their nature. Spatial interpolation was done for the thickness of one of the major aquitards (till and glaciolacustrine clay) in northwestern Germany. The dataset consists of 329 crisp values from boreholes supplemented by 172 imprecise values defined as fuzzy numbers. It is demonstrated that the reliability of regionalization was higher, compared to regionalization performed with the crisp dataset only. Fuzzy kriging was performed with FUZZEKS (Fuzzy Evaluation and Kriging System) developed at the Ecosystem Research Center at the University of Kiel.  相似文献   
37.
38.
39.
40.
The redistribution of air masses induces gravity variations (atmospheric pressure effect) up to about 20 μgal. These variations are disturbing signals in gravity records and they must be removed very carefully for detecting weak gravity signals. In the past, different methods have been developed for modelling of the atmospheric pressure effect. These methods use local or two-dimensional (2D) surface atmospheric pressure data and a standard height-dependent air density distribution. The atmospheric pressure effect is consisting of the elastic deformation and attraction term. The deformation term can be well modelled with 2D surface atmospheric pressure data, for instance with the Green's function method. For modelling of the attraction term, three-dimensional (3D) data are required. Results with 2D data are insufficient.From European Centre for Medium-Range Weather Forecasts (ECMWF) 3D atmospheric pressure data are now available. The ECMWF data used here are characterised by a spacing of Δ and Δλ = 0.5°, 60 pressure levels up to a height of 60 km and an interval of 6 h. These data are used for modelling of the atmospheric attraction term. Two attraction models have been developed based on the point mass attraction of air segments and the gravity potential of the air masses. The modelling shows a surface pressure-independent part of gravity variations induced by mass redistribution of the atmosphere in the order of some μgal. This part can only be determined by using 3D atmospheric pressure data. It has been calculated for the Vienna Superconducting Gravimeter site.From this follows that the gravity reduction can be improved by applying the 3D atmospheric attraction model for analysing long-periodic tidal waves including the polar tide. The same improvement is expected for reduction of long-term absolute gravity measurements or comparison of gravity measurements at different seasonal times. By using 3D atmospheric pressure data, the gravity correction can be improved up to some μgal.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号