首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6485篇
  免费   235篇
  国内免费   81篇
测绘学   235篇
大气科学   512篇
地球物理   1522篇
地质学   2158篇
海洋学   523篇
天文学   1177篇
综合类   28篇
自然地理   646篇
  2022年   30篇
  2021年   76篇
  2020年   87篇
  2019年   122篇
  2018年   178篇
  2017年   161篇
  2016年   231篇
  2015年   173篇
  2014年   196篇
  2013年   407篇
  2012年   257篇
  2011年   342篇
  2010年   291篇
  2009年   381篇
  2008年   336篇
  2007年   290篇
  2006年   268篇
  2005年   259篇
  2004年   261篇
  2003年   205篇
  2002年   214篇
  2001年   115篇
  2000年   144篇
  1999年   102篇
  1998年   114篇
  1997年   81篇
  1996年   85篇
  1995年   83篇
  1994年   90篇
  1993年   73篇
  1992年   88篇
  1991年   67篇
  1990年   55篇
  1989年   50篇
  1988年   57篇
  1987年   52篇
  1986年   56篇
  1985年   67篇
  1984年   64篇
  1983年   76篇
  1982年   57篇
  1981年   65篇
  1980年   55篇
  1979年   65篇
  1978年   51篇
  1977年   34篇
  1976年   28篇
  1975年   26篇
  1974年   26篇
  1973年   30篇
排序方式: 共有6801条查询结果,搜索用时 0 毫秒
71.
72.
73.
Warning systems are increasingly applied to reduce damage caused by different magnitudes of rockslides and rockfalls. In an integrated risk-management approach, the optimal risk mitigation strategy is identified by comparing the achieved effectiveness and cost; estimating the reliability of the warning system is the basis for such considerations. Here, we calculate the reliability and effectiveness of the warning system installed in Preonzo prior to a major rockfall in May 2012. “Reliability” is defined as the ability of the warning system to forecast the hazard event and to prevent damage. To be cost-effective, the warning system should forecast an event with a limited number of false alarms to avoid unnecessary costs for intervention measures. The analysis shows that to be reliable, warning systems should be designed as fail-safe constructions. They should incorporate components with low failure probabilities, high redundancy, have low warning thresholds, and additional control systems. In addition, the experts operating the warning system should have limited risk tolerance. In an additional hypothetical probabilistic analysis, we investigate the effect of the risk attitude of the decision makers and of the number of sensors on the probability of detecting the event and initiating a timely evacuation, as well as on the related intervention cost. The analysis demonstrates that quantitative assessments can support the identification of optimal warning system designs and decision criteria.  相似文献   
74.
Eutrophication and species introductions have resulted in increased macroalgal biomass in coastal ecosystems around the globe. Macroalgal mats may compete with microphytobenthos (MPB) for light and nutrients and, due to their position in the canopy, have a negative impact on MPB biomass. We tested this effect by conducting a meta-analysis of prior experiments, as well as a comparative survey, and a macroalgal-removal manipulation in the coastal lagoons of the Virginia Coastal Reserve (VCR) on the eastern shore of Virginia (USA). In all cases, MPB biomass was estimated using benthic chlorophyll as a proxy. While prior individual studies documented impacts of macroalgae, when effect sizes were averaged across studies, there was no consistent effect of macroalgal biomass on MPB biomass. In the VCR, a non-native red macroalga, Gracilaria vermiculophylla, dominates intertidal mats and attains high biomasses at some sites. Nevertheless, MPB biomass was unrelated to macroalgal mass based on a survey of mudflats. Further, when macroalgae were experimentally manipulated on a mudflat using a before and after impact design, there was no change in MPB. Based on the meta-analysis, survey, and manipulation we conducted, macroalgal mats do not have a generalizable effect on MPB, interactions seem context-dependent, and in the VCR, the effects on MPB appear neutral. This finding is important given the significance of MPB in supporting food webs and other estuarine ecosystem functions, as well as the increasing frequency and intensity of macroalgal blooms.  相似文献   
75.
The study of drying process in soils has received an increased attention in the last few years. This is very complex phenomenon that generally leads to the formation and propagation of desiccation cracks in the soil mass. In recent engineering applications, high aspect ratio elements have proved to be well suited to tackle this type of problem using finite elements. However, the modeling of interfaces between materials with orthotropic properties that generally exist in this type of problem using standard (isotropic) constitutive model is very complex and challenging in terms of the mesh generation, leading to very fine meshes that are intensive CPU demanding. A novel orthotropic interface mechanical model based on damage mechanics and capable of dealing with interfaces between materials in which the strength depends on the direction of analysis is proposed in this paper. The complete mathematical formulation is presented together with the algorithm suggested for its numerical implementation. Some simple yet challenging synthetic benchmarks are analyzed to explore the model capabilities. Laboratory tests using different textures at the contact surface between materials were conducted to evaluate the strengths of the interface in different directions. These experiments were then used to validate the proposed model. Finally, the approach is applied to simulate an actual desiccation test involving an orthotropic contact surface. In all the application cases the performance of the model was very satisfactory.  相似文献   
76.
An unsupervised machine-learning workflow is proposed for estimating fractional landscape soils and vegetation components from remotely sensed hyperspectral imagery. The workflow is applied to EO-1 Hyperion satellite imagery collected near Ibirací, Minas Gerais, Brazil. The proposed workflow includes subset feature selection, learning, and estimation algorithms. Network training with landscape feature class realizations provide a hypersurface from which to estimate mixtures of soil (e.g. 0.5 exceedance for pixels: 75% clay-rich Nitisols, 15% iron-rich Latosols, and 1% quartz-rich Arenosols) and vegetation (e.g. 0.5 exceedance for pixels: 4% Aspen-like trees, 7% Blackberry-like trees, 0% live grass, and 2% dead grass). The process correctly maps forests and iron-rich Latosols as being coincident with existing drainages, and correctly classifies the clay-rich Nitisols and grasses on the intervening hills. These classifications are independently corroborated visually (Google Earth) and quantitatively (random soil samples and crossplots of field spectra). Some mapping challenges are the underestimation of forest fractions and overestimation of soil fractions where steep valley shadows exist, and the under representation of classified grass in some dry areas of the Hyperion image. These preliminary results provide impetus for future hyperspectral studies involving airborne and satellite sensors with higher signal-to-noise and smaller footprints.  相似文献   
77.
Schmidt  Daniel F.  Grise  Kevin M.  Pace  Michael L. 《Climatic change》2019,152(3-4):517-532
Climatic Change - This study examines the climatic drivers of ice-off dates for lakes and rivers across the Northern Hemisphere. Most lakes and rivers have trended toward earlier ice-off dates over...  相似文献   
78.
79.
Five gabarbands (dams), components of integrated soil and water conservation systems, were investigated in the arid region of Sindh Kohistan. The dams are associated with two prehistoric Kot Dijian settlements, Phang and Kohtrash (3200–2800 B. C.). The dams were constructed with relatively permeable materials. Three of the dams, South, East, and North, close off water gaps and a strike valley, respectively, to form a detention basin. The West Dam, located on Phang Nai, upstream of the detention basin removed the coarser sediment fraction from the flows. Spring Dam, located in a water gap to the north of the detention basin, acted as a low-head weir to distribute flow from a perennial spring onto the floodplain of Baran Nai, where double-cropping was probably practiced. Faulting eliminated the spring, which had probably supported the Kohtrash site, and led to construction of the detection basin for the purposes of subsurface storage of detained flows. Association of both modern and prehistoric sites with springs suggests that there has not been appreciable climate change in Sindh Kohistan in the last 5000 years. © 1993 John Wiley & Sons, Inc.  相似文献   
80.
Strain style, magnitude and distribution within mass‐transport complexes (MTCs) are important for understanding the process evolution of submarine mass flows and for estimating their runout distances. Structural restoration and quantification of strain in gravitationally driven passive margins have been shown to approximately balance between updip extensional and downdip contractional domains; such an exercise has not yet been attempted for MTCs. We here interpret and structurally restore a shallowly buried (c. 1,500 mbsf) and well‐imaged MTC, offshore Uruguay using a high‐resolution (12.5 m vertical and 15 × 12.5 m horizontal resolution) three‐dimensional seismic‐reflection survey. This allows us to characterise and quantify vertical and lateral strain distribution within the deposit. Detailed seismic mapping and attribute analysis shows that the MTC is characterised by a complicated array of kinematic indicators, which vary spatially in style and concentration. Seismic‐attribute extractions reveal several previously undocumented fabrics preserved in the MTC, including internal shearing in the form of sub‐orthogonal shear zones, and fold‐thrust systems within the basal shear zone beneath rafted‐blocks. These features suggest multiple transport directions and phases of flow during emplacement. The MTC is characterised by a broadly tripartite strain distribution, with extensional (e.g. normal faults), translational and contractional (e.g. folds and thrusts) domains, along with a radial frontally emergent zone. We also show how strain is preferentially concentrated around intra‐MTC rafted‐blocks due to their kinematic interactions with the underlying basal shear zone. Overall, and even when volume loss within the frontally emergent zone is included, a strain difference between extension (1.6–1.9 km) and contraction (6.7–7.3 km) is calculated. We attribute this to a combination of distributed, sub‐seismic, ‘cryptic’ strain, likely related to de‐watering, grain‐scale deformation and related changes in bulk sediment volume. This work has implications for assessing MTCs strain distribution and provides a practical approach for evaluating structural interpretations within such deposits.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号