首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   36697篇
  免费   818篇
  国内免费   458篇
测绘学   1023篇
大气科学   3278篇
地球物理   7715篇
地质学   12761篇
海洋学   2849篇
天文学   7795篇
综合类   96篇
自然地理   2456篇
  2020年   260篇
  2019年   307篇
  2018年   651篇
  2017年   633篇
  2016年   897篇
  2015年   613篇
  2014年   860篇
  2013年   1778篇
  2012年   977篇
  2011年   1336篇
  2010年   1135篇
  2009年   1578篇
  2008年   1358篇
  2007年   1212篇
  2006年   1281篇
  2005年   1112篇
  2004年   1089篇
  2003年   1056篇
  2002年   1059篇
  2001年   853篇
  2000年   921篇
  1999年   756篇
  1998年   732篇
  1997年   740篇
  1996年   655篇
  1995年   617篇
  1994年   558篇
  1993年   495篇
  1992年   504篇
  1991年   479篇
  1990年   475篇
  1989年   442篇
  1988年   432篇
  1987年   513篇
  1986年   485篇
  1985年   529篇
  1984年   618篇
  1983年   628篇
  1982年   555篇
  1981年   550篇
  1980年   492篇
  1979年   492篇
  1978年   496篇
  1977年   419篇
  1976年   381篇
  1975年   380篇
  1974年   429篇
  1973年   416篇
  1972年   257篇
  1971年   240篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
981.
We obtain the wave velocities and quality factors of clay‐bearing sandstones as a function of pore pressure, frequency and partial saturation. The model is based on a Biot‐type three‐phase theory that considers the coexistence of two solids (sand grains and clay particles) and a fluid mixture. Additional attenuation is described with the constant‐Q model and viscodynamic functions to model the high‐frequency behaviour. We apply a uniform gas/fluid mixing law that satisfies the Wood and Voigt averages at low and high frequencies, respectively. Pressure effects are accounted for by using an effective stress law. By fitting a permeability model of the Kozeny– Carman type to core data, the model is able to predict wave velocity and attenuation from seismic to ultrasonic frequencies, including the effects of partial saturation. Testing of the model with laboratory data shows good agreement between predictions and measurements.  相似文献   
982.
The transient dynamic response of saturated soil under suddenly applied normal and horizontal concentrated loading is studied in this paper. The behavior of saturated soil is governed by Biot's consolidation theory. The general solutions for Biot equations of equilibrium are derived in terms of displacements and variations of fluid volume, using Laplace–Hankel integral transforms. The solutions in the time domain can be evaluated by numerical inverse Laplace–Hankel transforms. Selected numerical results for displacements, stresses, and pore pressures are presented. Comparisons with existing closed-form solutions for the elastic half-space are made to confirm the accuracy of the present solutions. The solutions can be used to study a variety of transient wave propagation problems and dynamical interactions between saturated soil and structures.  相似文献   
983.
The small Central American republic of El Salvador has experienced, on average, one destructive earthquake per decade during the last hundred years. The latest events occurred on 13 January and 13 February 2001, with magnitudes Mw 7.7 and 6.6, respectively. The two events, which were of different tectonic origin, follow the patterns of the seismicity of the region although neither event has a known precedent in the earthquake catalogue in terms of size and location. The earthquakes caused damage to thousands of traditionally built houses and triggered hundreds of landslides, which were the main causes of fatalities. The earthquakes have clearly demonstrated trends of increasing seismic risk in El Salvador due to rapid population expansion in areas of high shaking and landslide hazard, exacerbated by deforestation and uncontrolled urbanisation. The institutional mechanisms required for the control of land use and building practice are very weak and present a major obstacle to risk mitigation.  相似文献   
984.
Electrokinetic phenomena in a water-porous medium with a fractal structure above percolation threshold are theoretically investigated. Fracture zone with space-variable porosity is considered as a model of an earthquake hypocenter zone in which the electrokinetic current results from fluid filtration in a fractal pore network. A critical exponent of the streaming potential coefficient is found to depend on both the transport critical exponent and correlation length critical exponent. In this model, logarithmic dependence of electric field amplitude E on the earthquake magnitude M is derived which is compatible with the one observed by the VAN group. Without fractal properties, this form of dependence contradicts the empirical data. The electromagnetic field far from the hypocenter is calculated, which leads to the prediction of weak magnetic field variations. To explain the observed amplitude of VAN's Seismic Electric Signals (SES), the electric source must be at a distance of about 10 km from the registration point if the medium is homogeneous. Therefore, some conductive channel(s) are needed to explain the long distance selective SES transmission.  相似文献   
985.
A swath bathymetric survey was conducted on Marsili Volcano, the biggest seamount in the Tyrrhenian Sea. It stands 3000 m above the surrounding oceanic crust of the 3500 m-deep Marsili back-arc basin and is axially located within the basin. The seamount has an elongated shape and presents distinctive morphology, with narrow (<1000 m) ridges, made up of several elongated cones, on the summit zone and extensive cone fields on its lower flanks. A dredging campaign carried out at water depths varying between 3400 and 600 m indicates that most of Marsili Seamount is composed of medium-K calc-alkaline basalts. Evolved high-K andesites were only recovered from the small cones on the summit axis zone. Petrological and geochemical characteristics of the least differentiated basalts reveal that at least two varieties of magmas have been erupted on the Marsili Volcano. Group 1 basalts have plagioclase and olivine as dominant phases and show lower Al, Ca, K, Ba, Rb and Sr, and higher Fe, Na, Ti and Zr with respect to a second type of basaltic magma. Group 2 basalts reveal the presence of clinopyroxene as an additional phenocryst phase. In addition, the two basaltic magmas have different original pre-eruptive H2O content (group 1, H2O-poor and group 2, H2O-rich). Moreover, comparison of the compositional trends and mineralogical compositions obtained from MELTS [Ghiorso, M.S., Sack, R.O., Contrib. Mineral. Petrol. 119 (1995) 197–212] fractional crystallization calculations reveal that the evolved andesites can only exclusively be derived from a low-pressure (0.3 kbar) fractionation of magmas compositionally similar to the least evolved group 2 basalts. Finally, we suggest that the high vesicularity of the basalts sampled at relatively great depths (>2400 m) on the edifice is governed by H2O and, probably, CO2 exsolution and is not a feature indicative of shallow water depth eruption.  相似文献   
986.
The Kerguelen Plateau, a Large Igneous Province in the southern Indian Ocean, was formed as a product of the Kerguelen hotspot in several eruptive phases during the last 120 Myr. We obtained new paleolatitudes for the central and northern Kerguelen Plateau from paleomagnetic investigations on basalts, which were drilled during ODP Leg 183 to the Kerguelen Plateau-Broken Ridge. The paleolatitudes coincide with paleolatitudes from previous investigations at the Kerguelen Plateau and Ninetyeast Ridge (the track of the Kerguelen hotspot) and indicate a difference between paleolatitudes and present position at 49°S of the Kerguelen hotspot. We show that true polar wander, the global motion between the mantle and the rotation axis, cannot explain this difference in latitudes. We present numerical model results of plume conduit motion in a large-scale mantle flow and the resulting surface hotspot motion. A large number of models all predict southward motion between 3° and 10° for the Kerguelen hotspot during the last 100 Myr, which is consistent with our paleomagnetic results.  相似文献   
987.
The Quaternary Eifel volcanic fields, situated on the Rhenish Massif in Germany, are the focus of a major interdisciplinary project. The aim is a detailed study of the crustal and mantle structure of the intraplate volcanic fields and their deep origin. Recent results from a teleseismic P-wave tomography study reveal a deep low-velocity structure which we infer to be a plume in the upper mantle underneath the volcanic area [J.R.R. Ritter et al., Earth Planet. Sci. Lett. 186 (2001) 7-14]. Here we present a travel-time investigation of 5038 teleseismic shear-wave arrivals in the same region. First, the transverse (T) and radial (R) component travel-time residuals are treated separately to identify possible effects of seismic anisotropy. A comparison of 2044 T- and 2994 R-component residuals demonstrates that anisotropy does not cause any first-order travel-time effects. The data sets reveal a deep-seated low-velocity anomaly beneath the volcanic region, causing a delay for teleseismic shear waves of about 3 s. Using 3773 combined R- and T-component residuals, an isotropic non-linear inversion is calculated. The tomographic images reveal a prominent S-wave velocity reduction in the upper mantle underneath the Eifel region. The anomaly extends down to at least 400 km depth. The velocity contrast to the surrounding mantle is depth-dependent (from −5% at 31-100 km depth to at least −1% at 400 km depth). At about 170-240 km depth the anomaly is nearly absent. The resolution of the data is sufficient to recover the described features, however the anomaly in the lower asthenosphere is underestimated due to smearing and damping. The main anomaly is similar to the P-wave model except the latter lacks the ‘hole’ near 200 km depth, and both are consistent with an upper mantle plume structure. For plausible anhydrous plume material in the uppermost 100 km of the mantle, an excess temperature as great as 200-300 K is estimated from the seismic anomaly. However, 1% partial melt reduces the required temperature anomaly to about 100 K. The temperature anomaly associated with the deeper part of the plume (250 to about 450 km depth) is at least 70 K. However, this estimate is quite uncertain, because the amplitude of the shear-wave anomaly may be larger than the modelled one. Another possibility is water in the upwelling material. The gap at 170-240 km depth could arise from an increase of the shear modulus caused by dehydration processes which would not affect P-wave velocities as much. An interaction of temperature and compositional variations, including melt and possibly water, makes it difficult to differentiate quantitatively between the causes of the deep-seated low-velocity anomaly.  相似文献   
988.
A new 3-D model REGINA (REGIonal high resolutioN Air pollution model) is under development at the National Environmental Research Institute (NERI). The model is based on pieces from several models developed over the last decades at NERI. The aim of the work is to develop a nested model which can operate with very high resolution in both space and time. To fulfill this aim the choice and implementation of accurate numerical methods is crucial. The model will be applied for studying air pollution phenomena (both monitoring, forecasting and scenarios) over Denmark. The present paper is focussed on the modification, implementation and testing of a numerical method for treating the horizontal advection in the model as well as the implementation of two-way nesting techniques. The horizontal transport in the model is solved using an accurate space derivative algorithm. This method is traditionally implemented with periodic boundary conditions, however, this is not an option for nested modelling. A new method for calculating non-periodic boundary conditions has been developed in order to overcome this problem. Extensive testing of the numerical solution of the advection and the coupling of the solution of advection and chemistry in the model using Molenkamp–Crowley rotation tests have been carried out. The results show that the model with the current implementation of numerical methods is suitable for calculating air pollution levels with high resolution.  相似文献   
989.
It is critical to understand and quantify the temporal and spatial variability in hillslope hydrological data in order to advance hillslope hydrological studies, evaluate distributed parameter hydrological models, analyse variability in hydrological response of slopes and design efficient field data sampling networks. The spatial and temporal variability of field‐measured pore‐water pressures in three residual soil slopes in Singapore was investigated using geostatistical methods. Parameters of the semivariograms, namely the range, sill and nugget effect, revealed interesting insights into the spatial structure of the temporal situation of pore‐water pressures in the slopes. While informative, mean estimates have been shown to be inadequate for modelling purposes, indicator semivariograms together with mean prediction by kriging provide a better form of model input. Results also indicate that significant temporal and spatial variability in pore‐water pressures exists in the slope profile and thereby induces variability in hydrological response of the slope. Spatial and temporal variability in pore‐water pressure decreases with increasing soil depth. The variability decreases during wet conditions as the slope approaches near saturation and the variability increases with high matric suction development following rainfall periods. Variability in pore‐water pressures is greatest at shallow depths and near the slope crest and is strongly influenced by the combined action of microclimate, vegetation and soil properties. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   
990.
The structure of the Mid-Atlantic Ridge at 5°S was investigated during a recent cruise with the FS Meteor. A major dextral transform fault (hereafter the 5°S FZ) offsets the ridge left-laterally by 80 km. Just south of the transform and to the west of the median valley, the inside corner (IC – the region bounded by the ridge and the active transform) is marked by a major massif, characterized by a corrugated upper surface. Fossil IC massifs can also be identified further to the west. Unusually, a massif almost as high as the IC massif also characterizes the outside corner (OC) south of the inactive fracture zone and to the east of the median valley. This OC massif has axis-parallel dimensions identical to the IC massif and both are bounded on their sides closest to the spreading axis by abrupt, steep slopes. An axial volcanic ridge is well developed in the median valley both south of the IC/OC massifs and in an abandoned rift valley to the east of the OC massif, but is absent along the new ridge-axis segment between the IC and OC massifs. Wide-angle seismic data show that between the massifs, the crust of the median valley thins markedly towards the FZ. These observations are consistent with the formation of the OC massif by the rifting of an IC core complex and the development of a new spreading centre between the IC and OC massifs. The split IC massif presents an opportunity to study the internal structure of the footwall of a detachment fault, from the corrugated fault surface to deeper beneath the fault, without recourse to drilling. Preliminary dredging recovered gabbros from the scarp slope of the rifted IC massif, and serpentinites and gabbros from the intersection of this scarp with the corrugated surface. This is compatible with a concentration of serpentinites along the detachment surface, even where the massif internally is largely plutonic in nature.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号