首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6484篇
  免费   236篇
  国内免费   81篇
测绘学   235篇
大气科学   512篇
地球物理   1522篇
地质学   2158篇
海洋学   523篇
天文学   1177篇
综合类   28篇
自然地理   646篇
  2022年   30篇
  2021年   76篇
  2020年   87篇
  2019年   122篇
  2018年   178篇
  2017年   161篇
  2016年   231篇
  2015年   173篇
  2014年   196篇
  2013年   407篇
  2012年   257篇
  2011年   342篇
  2010年   291篇
  2009年   381篇
  2008年   336篇
  2007年   290篇
  2006年   268篇
  2005年   259篇
  2004年   261篇
  2003年   205篇
  2002年   214篇
  2001年   115篇
  2000年   144篇
  1999年   102篇
  1998年   114篇
  1997年   81篇
  1996年   85篇
  1995年   83篇
  1994年   90篇
  1993年   73篇
  1992年   88篇
  1991年   67篇
  1990年   55篇
  1989年   50篇
  1988年   57篇
  1987年   52篇
  1986年   56篇
  1985年   67篇
  1984年   64篇
  1983年   76篇
  1982年   57篇
  1981年   65篇
  1980年   55篇
  1979年   65篇
  1978年   51篇
  1977年   34篇
  1976年   28篇
  1975年   26篇
  1974年   26篇
  1973年   30篇
排序方式: 共有6801条查询结果,搜索用时 15 毫秒
991.
In light of recent reductions in sulphur (S) and nitrogen (N) emissions mandated by Title IV of the Clean Air Act Amendments of 1990, temporal trends and trend coherence in precipitation (1984–2001 and 1992–2001) and surface water chemistry (1992–2001) were determined in two of the most acid‐sensitive regions of North America, i.e. the Catskill and Adirondack Mountains of New York. Precipitation chemistry data from six sites located near these regions showed decreasing sulphate (SO42?), nitrate (NO3?), and base cation (CB) concentrations and increasing pH during 1984–2001, but few significant trends during 1992–2001. Data from five Catskill streams and 12 Adirondack lakes showed decreasing trends in SO42? concentrations at all sites, and decreasing trends in NO3?, CB, and H+ concentrations and increasing trends in dissolved organic carbon at most sites. In contrast, acid‐neutralizing capacity (ANC) increased significantly at only about half the Adirondack lakes and in one of the Catskill streams. Flow correction prior to trend analysis did not change any trend directions and had little effect on SO42? trends, but it caused several significant non‐flow‐corrected trends in NO3? and ANC to become non‐significant, suggesting that trend results for flow‐sensitive constituents are affected by flow‐related climate variation. SO42? concentrations showed high temporal coherence in precipitation, surface waters, and in precipitation–surface water comparisons, reflecting a strong link between S emissions, precipitation SO42? concentrations, and the processes that affect S cycling within these regions. NO3? and H+ concentrations and ANC generally showed weak coherence, especially in surface waters and in precipitation–surface water comparisons, indicating that variation in local‐scale processes driven by factors such as climate are affecting trends in acid–base chemistry in these two regions. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   
992.
Advance of the Late Weichselian (Valdaian) Scandinavian Ice Sheet (SIS) in northwestern Russia took place after a period of periglacial conditions. Till of the last SIS, Bobrovo till, overlies glacial deposits from the previous Barents and Kara Sea ice sheets and marine deposits of the Last Interglacial. The till is identified by its contents of Scandinavian erratics and it has directional properties of westerly provenance. Above the deglaciation sediments, and extra marginally, it is replaced by glaciofluvial and glaciolacustrine deposits. At its maximum extent, the last SIS was more restricted in Russia than previously outlined and the time of termination at 18-16 cal. kyr BP was almost 10 kyr delayed compared to the southwestern part of the ice sheet. We argue that the lithology of the ice sheets' substrate, and especially the location of former proglacial lake basins, influenced the dynamics of the ice sheet and guided the direction of flow. We advocate that, while reaching the maximum extent, lobe-shaped glaciers protruded eastward from SIS and moved along the path of water-filled lowland basins. Ice-sheet collapse and deglaciation in the region commenced when ice lobes were detached from the main ice sheet. During the Lateglacial warming, disintegration and melting took place in a 200-600 km wide zone along the northeastern rim of SIS associated with thick Quaternary accumulations. Deglaciation occurred through aerial downwasting within large fields of dead ice developed during successively detached ice lobes. Deglaciation led to the development of hummocky moraine landscapes with scattered periglacial and ice-dammed lakes, while a sub-arctic flora invaded the region.  相似文献   
993.
The James Webb Space Telescope (JWST) was conceived as the scientific successor to the Hubble Space Telescope (HST) and Spitzer Space Telescope. The instrument suite provides broad wavelength coverage and capabilities aimed at four key science themes: 1) The end of the dark ages: first light and reionization, 2) The assembly of galaxies, 3) The birth of stars and protoplanetary systems, and 4) Planetary systems and the origins of life. To accomplish these ambitious goals, JWST's detectors provide state-of-the-art performance spanning the λ = 0.6–28 μm wavelength range. In this paper, we describe JWST with an emphasis on its infrared detectors.  相似文献   
994.
995.
An Erratum has been published for this article in Hydrological Processes 16(5) 2002, 1130–1131. Humid tropical regions are often characterized by extreme variability of fluvial processes. The Rio Terraba drains the largest river basin, covering 4767 km2, in Costa Rica. Mean annual rainfall is 3139±419sd mm and mean annual discharge is 2168±492sd mm (1971–88). Loss of forest cover, high rainfall erosivity and geomorphologic instability all have led to considerable degradation of soil and water resources at local to basin scales. Parametric and non‐parametric statistical methods were used to estimate sediment yields. In the Terraba basin, sediment yields per unit area increase from the headwaters to the basin mouth, and the trend is generally robust towards choice of methods (parametric and LOESS) used. This is in contrast to a general view that deposition typically exceeds sediment delivery with increase in basin size. The specific sediment yield increases from 112±11·4sd t km?2 year?1 (at 317·9 km2 on a major headwater tributary) to 404±141·7sd t km?2 year?1 (at 4766·7 km2) at the basin mouth (1971–92). The analyses of relationships between sediment yields and basin parameters for the Terraba sub‐basins and for a total of 29 basins all over Costa Rica indicate a strong land use effect related to intensive agriculture besides hydro‐climatology. The best explanation for the observed pattern in the Terraba basin is a combined spatial pattern of land use and rainfall erosivity. These were integrated in a soil erosion index that is related to the observed patterns of sediment yield. Estimated sediment delivery ratios increase with basin area. Intensive agriculture in lower‐lying alluvial fans exposed to highly erosive rainfall contributes a large part of the sediment load. The higher elevation regions, although steep in slope, largely remain under forest, pasture, or tree‐crops. High rainfall erosivity (>7400 MJ mm ha?1 h?1 year ?1) is associated with land uses that provide inadequate soil protection. It is also associated with steep, unstable slopes near the basin mouth. Improvements in land use and soil management in the lower‐lying regions exposed to highly erosive rainfall are recommended, and are especially important to basins in which sediment delivery ratio increases downstream with increasing basin area. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   
996.
997.
998.
999.
Spatial and seasonal variations in CO2 and CH4 concentrations in streamwater and adjacent soils were studied at three sites on Brocky Burn, a headwater stream draining a peatland catchment in upland Britain. Concentrations of both gases in the soil atmosphere were significantly higher in peat and riparian soils than in mineral soils. Peat and riparian soil CO2 concentrations varied seasonally, showing a positive correlation with air and soil temperature. Streamwater CO2 concentrations at the upper sampling site, which mostly drained deep peats, varied from 2·8 to 9·8 mg l?1 (2·5 to 11·9 times atmospheric saturation) and decreased markedly downstream. Temperature‐related seasonal variations in peat and riparian soil CO2 were reflected in the stream at the upper site, where 77% of biweekly variation was explained by an autoregressive model based on: (i) a negative log‐linear relationship with stream flow; (ii) a positive linear relationship with soil CO2 concentrations in the shallow riparian wells; and (iii) a negative linear relationship with soil CO2 concentrations in the shallow peat wells, with a significant 2‐week lag term. These relationships changed markedly downstream, with an apparent decrease in the soil–stream linkage and a switch to a positive relationship between stream flow and stream CO2. Streamwater CH4 concentrations also declined sharply downstream, but were much lower (<0·01 to 0·12 mg l?1) than those of CO2 and showed no seasonal variation, nor any relationship with soil atmospheric CH4 concentrations. However, stream CH4 was significantly correlated with stream flow at the upper site, which explained 57% of biweekly variations in dissolved concentrations. We conclude that stream CO2 can be a useful integrative measure of whole catchment respiration, but only at sites where the soil–stream linkage is strong. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   
1000.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号