首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   24401篇
  免费   171篇
  国内免费   917篇
测绘学   1411篇
大气科学   1980篇
地球物理   4497篇
地质学   11588篇
海洋学   1002篇
天文学   1631篇
综合类   2161篇
自然地理   1219篇
  2020年   1篇
  2018年   4761篇
  2017年   4037篇
  2016年   2576篇
  2015年   233篇
  2014年   81篇
  2013年   25篇
  2012年   989篇
  2011年   2728篇
  2010年   2016篇
  2009年   2310篇
  2008年   1888篇
  2007年   2360篇
  2006年   52篇
  2005年   194篇
  2004年   402篇
  2003年   409篇
  2002年   249篇
  2001年   47篇
  2000年   51篇
  1999年   13篇
  1998年   21篇
  1981年   21篇
  1980年   19篇
  1976年   6篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
981.
We have constructed a time series of the number of coronal mass ejections (CMEs) observed by SOHO/LASCO during solar cycle 23. Using spectral analysis techniques (the maximum entropy method and wavelet analysis) we found short-period (< one year) semiperiodic activity. Among others, we found interesting periodicities at 193, 36, 28, and 25 days. We discuss the implications of such short-period activity in terms of the emergence and escape of magnetic flux from the convection zone, through the low solar atmosphere (where these periodicities have been found for numerous activity parameters), toward interplanetary space. This analysis shows that CMEs remove the magnetic flux in a quasiperiodic process in a way similar to that of magnetic flux emergence and other solar eruptive activity.  相似文献   
982.
In this work, we have studied the model of modified Chaplygin gas and its role in accelerating phase of the universe for anisotropic model. We have assumed that the equation of state of this modified model is valid from the radiation era to ΛCDM model. We have obtained the possible relation between the hessence and the modified Chaplygin gas. We have also use the statefinder parameters for characterize different phase of the universe diagrammatically.  相似文献   
983.
We use linear analysis to simulate the evolution of a coronal loop in response to a localized impulsive event. The disturbance is modeled by injecting a narrow Gaussian velocity pulse near one footpoint of a loop in equilibrium. Three different damping mechanisms, namely viscosity, thermal conduction, and optically thin radiation, are included in the loop calculations. We consider homogeneous and gravitationally stratified, isothermal loops of varying length (50≤L≤400 Mm) and temperature (2≤T≤10 MK). We find that a localized pulse can effectively excite slow magnetoacoustic waves that propagate up along the loop. The amplitudes of the oscillations increase with decreasing loop temperature and increasing loop length and size of the pulse width. At T≥4 MK, the waves are dissipated by the combined effects of viscosity and thermal conduction, whereas at temperatures of 2 MK, or lower, wave dissipation is governed by radiative cooling. We predict periods in the range of 4.6?–?41.6 minutes. The wave periods remain unaltered by variations of the pulse size, decrease with the loop temperature, and increase almost linearly with the loop length. In addition, gravitational stratification results in a small reduction of the periods and amplification of the waves as they propagate up along the loop.  相似文献   
984.
985.
Spectroheliograms and disk-integrated flux monitoring in the strong resonance line of Ca ii (K line) provide the longest record of chromospheric magnetic plages. We compare recent reductions of the Ca ii K spectroheliograms obtained since 1907 at the Kodaikanal, Mt. Wilson, and US National Solar Observatories. Certain differences between the individual plage indices appear to be caused mainly by differences in the spectral passbands used. Our main finding is that the indices show remarkably consistent behavior on the multidecadal time scales of greatest interest to global warming studies. The reconstruction of solar ultraviolet flux variation from these indices differs significantly from the 20th-century global temperature record. This difference is consistent with other findings that, although solar UV irradiance variation may affect climate through influence on precipitation and storm tracks, its significance in global temperature remains elusive.  相似文献   
986.
Stable isotope data of the foraminiferal carbonate shells and bulk sediment samples from the Central Paratethys were investigated to contribute to better knowledge of the paleoenvironmental changes in Badenian (Middle Miocene). Five benthic (Uvigerina semiornata, U. aculeata, Ammonia beccarii, Elphidium sp. and Heterolepa dutemplei) and three planktonic taxa (Globigerina bulloides, G. diplostoma and Globigerinoides trilobus), characterising the bottom, intermediate and superficial layers of the water column, were selected from the Vienna Basin (W Slovakia). The foraminiferal fauna and its isotope signal point out to temperature-stratified, nutrient-rich and consequently less-oxygenated marine water during the Middle/Late Badenian. Negative carbon isotope ratios indicate increased input of 12C-enriched organic matter to the bottom of the Vienna Basin. Positive benthic δ18O implies that the global cooling tendency recorded in the Middle Miocene has also affected the intramountain Vienna Basin. In this time, the Central Paratethys has been in the process of isolation. Our stable isotope trend suggests that the communication with Mediterranean Sea has been still more or less active on the south of Vienna Basin (Slovak part) in the Late Badenian, whereas the seawater exchange towards north was apparently reduced already during the Middle Badenian.  相似文献   
987.
Conditional nonlinear optimal perturbation (CNOP) is a nonlinear generalization of linear singular vector (LSV) and features the largest nonlinear evolution at prediction time for the initial perturbations in a given constraint. It was proposed initially for predicting the limitation of predictability of weather or climate. Then CNOP has been applied to the studies of the problems related to predictability for weather and climate. In this paper, we focus on reviewing the recent advances of CNOP’s applications, which involves the ones of CNOP in problems of ENSO amplitude asymmetry, block onset, and the sensitivity analysis of ecosystem and ocean’s circulations, etc. Especially, CNOP has been primarily used to construct the initial perturbation fields of ensemble forecasting, and to determine the sensitive area of target observation for precipitations. These works extend CNOP’s applications to investigating the nonlinear dynamical behaviors of atmospheric or oceanic systems, even a coupled system, and studying the problem of the transition between the equilibrium states. These contributions not only attack the particular physical problems, but also show the superiority of CNOP to LSV in revealing the effect of nonlinear physical processes. Consequently, CNOP represents the optimal precursors for a weather or climate event; in predictability studies, CNOP stands for the initial error that has the largest negative effect on prediction; and in sensitivity analysis, CNOP is the most unstable (sensitive) mode. In multi-equilibrium state regime, CNOP is the initial perturbation that induces the transition between equilibriums most probably. Furthermore, CNOP has been used to construct ensemble perturbation fields in ensemble forecast studies and to identify sensitive area of target observation. CNOP theory has become more and more substantial. It is expected that CNOP also serves to improve the predictability of the realistic predictions for weather and climate events plays an increasingly important role in exploring the nonlinear dynamics of atmospheric, oceanic and coupled atmosphere-ocean system. Supported by National Basic Research Program of China (Grant Nos. 2006CB403606, 2007CB411800), National Natural Science Foundation of China (Grant Nos. 40830955, 40675030, 40505013), Institute of Atmospheric Physics, Chinese Academy of Sciences (Grant No. IAP07202), and LASG State Key Laboratory Special Fund  相似文献   
988.
Small (1–3 mm), hollow spherules of hexahydrite have been collected falling out of the magmatic gas plume downwind of Kīlauea’s summit vent. The spherules were observed on eight separate occasions during 2009–2010 when a lake of actively spattering lava was present ~150–200 m below the rim of the vent. The shells of the spherules have a fine bubbly foam structure less than 0.1 mm thick, composed almost entirely of hexahydrite [MgSO4·6H2O] Small microspherules of lava (<5 μm across) along with mineral and rock fragments from the magmatic plume adhered to the outside of the hexahydrite spherules. Phase relationships and the particulate matter in the magmatic plume indicate that the spherules originated as a bubbly solution injected into and mixed with the magmatic plume. The most likely mechanism for production of hexahydrite spherules is boiling of MgSO4-saturated meteoric water in the walls of the conduit above the surface of the lava lake. Solfataric sulfates may thus be recycled and reinjected into the plume, creating particulates of sulfate minerals that can be distributed far from their original source.  相似文献   
989.
We used elemental carbon, nitrogen, hydrogen and sulfur as well as ratios of hydrogen and nitrogen with total organic carbon for investigation of source and conditions of organic matter in alluvial Danube sediments. We also determined the pseudo total concentrations of metals presented as a sum of extracted concentration after five sequential extraction steps. The pseudo total metal concentrations were found to be (mg kg−1) for Mn, 666; Fe, 25,852; Mg, 16,193; K, 2,063; Ni, 32.4; Zn, 72.2; Pb, 15.0; Cu, 26.0 and for Cr, 15.9. Correlation analysis and two multivariate analysis methods (principal component and cluster analysis) were helpful in determining the associations between the pseudo total extracted fractions of metals and with elemental carbon, hydrogen, nitrogen, sulfur, total inorganic and organic carbon. These correlations will help us to identify substrates of trace metals in different oxic/anoxic conditions. The correlation results of the trace metals and Fe, K, Mg and Mn suggest their adsorption, mainly onto Fe and Mn (hydro)oxides and K alumosilicates, whereas correlations of metals with sulfur indicate that they were precipitated as Fe-sulfides.  相似文献   
990.
A new small-scale geotechnical physical model in 1-g and unconfined condition, combining the transparent soil, close-range photogrammetry and particle image velocimetry (PIV), was employed, which provides a non-intrusively internal deformation measurement approach to monitor the internal deformation of soil caused by expanded-base pile jacking with casing. The transparent soil was made of fused quartz and its refractive index matched blended oil, adding reflective particles (glass beads). Close-range photogrammetry was employed to record the images of the process of casing jacking and extraction in transparent soil, allowing the use of Matlab-based Geo-PIV to figure out the displacement field converted from image space to object space. Analysis of test results indicates that the maximum displacement caused by casing jacking for expanded-conical-base pile is decreased by 29% compared with that for expanded-flat-base pile. The main movement happens at the early stage of casing extraction. The maximum displacement caused by casing extraction for the conical base is about 43% of that for the flat base, while the affected zone caused by casing extraction for the conical base accounts for about 1/3 of that for the flat base. The contraction for horizontal displacements tends to decrease with the depth increasing. By contrast, the contraction under pile base decreases with the increasing of displacement. The displacements generated by jacking a conventional pile having a diameter equal to the casing diameter of the expanded-base pile were comparable to the net displacement taking place due to expanded-base pile installation for the conical base pile.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号