全文获取类型
收费全文 | 37516篇 |
免费 | 1354篇 |
国内免费 | 911篇 |
专业分类
测绘学 | 969篇 |
大气科学 | 2914篇 |
地球物理 | 7695篇 |
地质学 | 13956篇 |
海洋学 | 3362篇 |
天文学 | 8217篇 |
综合类 | 247篇 |
自然地理 | 2421篇 |
出版年
2022年 | 307篇 |
2021年 | 498篇 |
2020年 | 501篇 |
2019年 | 508篇 |
2018年 | 926篇 |
2017年 | 880篇 |
2016年 | 1051篇 |
2015年 | 736篇 |
2014年 | 1059篇 |
2013年 | 1882篇 |
2012年 | 1354篇 |
2011年 | 1793篇 |
2010年 | 1570篇 |
2009年 | 2025篇 |
2008年 | 1704篇 |
2007年 | 1775篇 |
2006年 | 1704篇 |
2005年 | 1224篇 |
2004年 | 1139篇 |
2003年 | 1040篇 |
2002年 | 1006篇 |
2001年 | 851篇 |
2000年 | 827篇 |
1999年 | 672篇 |
1998年 | 720篇 |
1997年 | 691篇 |
1996年 | 573篇 |
1995年 | 563篇 |
1994年 | 479篇 |
1993年 | 421篇 |
1992年 | 419篇 |
1991年 | 386篇 |
1990年 | 457篇 |
1989年 | 373篇 |
1988年 | 356篇 |
1987年 | 439篇 |
1986年 | 346篇 |
1985年 | 430篇 |
1984年 | 531篇 |
1983年 | 451篇 |
1982年 | 452篇 |
1981年 | 403篇 |
1980年 | 419篇 |
1979年 | 360篇 |
1978年 | 345篇 |
1977年 | 340篇 |
1976年 | 309篇 |
1975年 | 296篇 |
1974年 | 312篇 |
1973年 | 340篇 |
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
51.
Kenneth H. Dunton Jonathan L. Goodall Susan V. Schonberg Jacqueline M. Grebmeier David R. Maidment 《Deep Sea Research Part II: Topical Studies in Oceanography》2005,52(24-26):3462
Using geographic information systems (GIS) software and geostatistical techniques, we utilized three decades of water-column chlorophyll a data to examine the relative importance of autochthonous versus allochthonous sources of reduced carbon to benthic communities that occur from the northern Bering to the eastern Beaufort Sea shelf. Spatial trend analyses revealed areas of high benthic biomass (>300 g m−2) and chlorophyll (>150 mg m−2) on both the southern and northern Chukchi shelf; both areas are known as depositional centers for reduced organic matter that originates on the Bering Sea shelf and is advected northward in Anadyr and Bering shelf water masses. We found a significant correlation between biomass and chlorophyll a in the Chukchi Sea, reflective of the strong benthic–pelagic coupling in a system that is utilized heavily by benthic-feeding marine mammals. In contrast, there was no significant correlation between biomass and chlorophyll in the Beaufort Sea, which by comparison, is considerably less productive (biomass and chlorophyll, <75 g m−2 and <50 mg m−2, respectively). One notable exception is an area of relatively high biomass (50–100 g m−2) and chlorophyll (80 mg m−2) near Barter Island in the eastern Beaufort Sea. Compared to other adjacent areas in the Beaufort Sea, the chlorophyll values in the vicinity of Barter Island were considerably higher and likely reflect a long-hypothesized upwelling in that area and close coupling between the benthos and autochthonous production. In the Bering Sea, a drop in benthic biomass in 1994 compared with previous measurements (1974–1993) may support earlier observations that document a decline in biomass that began between the 1980s and 1990s in the Chirikov Basin and south of St. Lawrence Island. The results of this study indicate that the benthos is an excellent long-term indicator of both local and physical advective processes. In addition, this work provides further evidence that secondary production on arctic shelves can be significantly augmented by reduced carbon advected from highly productive adjacent shelves. 相似文献
52.
Geometry and kinematics of dunes during steady and unsteady flows in the Calamus River, Nebraska, USA 总被引:3,自引:0,他引:3
SHARON L. GABEL 《Sedimentology》1993,40(2):237-269
The geometry and kinematics of river dunes were studied in a reach of the Calamus River, Nebraska. During day-long surveys, dune height, length, steepness, migration rate, creation and destruction were measured concurrently with bedload transport rate, flow depth, flow velocity and bed shear stress. Within a survey, individual dune heights, lengths and migration rates were highly variable, associated with their three-dimensional geometry and changes in their shape through time. Notwithstanding this variability, there were discernible changes in mean dune height, length and migration rate in response to changing discharge over several days. Changes in mean dune height and length lagged only slightly behind changes in discharge. Therefore, during periods of both steady and unsteady flow, mean dune lengths were quite close to equilibrium values predicted by theoretical models. Mean dune steepnesses were also similar to predicted equilibrium values, except during high, falling flows when the steepness was above that predicted. Variations in mean dune height and length with discharge are similar to those predicted by theory under conditions of low mean dune excursion and discharge variation with a short high water period and long low water period. However, the calculated rates of change of height of individual dunes vary considerably from those measured. Rates of dune creation and destruction were unrelated to discharge variations, contrary to previous results. Instead, creations and destructions were apparently the result of local variations in bed shear stress and sediment transport rate. Observed changes in dune height during unsteady flows agree with theory fairly well at low bed shear stresses, but not at higher bed shear stresses when suspended sediment transport is significant. 相似文献
53.
T.?M.?Shapland A.?J.?McElrone R.?L.?Snyder K.?T.?Paw UEmail author 《Boundary-Layer Meteorology》2012,145(1):27-44
Ramp features in the turbulent scalar field are associated with turbulent coherent structures, which dominate energy and mass fluxes in the atmospheric surface layer. Although finer scale ramp-like shapes embedded within larger scale ramp-like shapes can readily be perceived in turbulent scalar traces, their presence has largely been overlooked in the literature. We demonstrate the signature of more than one ramp scale in structure functions of the turbulent scalar field measured from above bare ground and two types of short plant canopies, using structure-function time lags ranging in scale from isotropic to larger than the characteristic coherent structures. Spectral analysis of structure functions was used to characterize different scales of turbulent structures. By expanding structure function analysis to include two ramp scales, we characterized the intermittency, duration, and surface renewal flux contribution of the smallest (i.e., Scale One) and the dominant (i.e., Scale Two) coherent structure scales. The frequencies of the coherent structure scales increase with mean wind shear, implying that both Scale One and Scale Two are shear-driven. The embedded Scale One turbulent structure scale is ineffectual in the surface-layer energy and mass transport process. The new method reported here for obtaining surface renewal-based scalar exchange works well over bare ground and short canopies under unstable conditions, effectively eliminating the α calibration for these conditions and forming the foundation for analysis over taller and more complex surfaces. 相似文献
54.
Ocean tide loading (OTL) displacements from global and local grids: comparisons to GPS estimates over the shelf of Brittany, France 总被引:1,自引:0,他引:1
Stavros A. Melachroinos R. Biancale M. Llubes F. Perosanz F. Lyard M. Vergnolle M. -N. Bouin F. Masson J. Nicolas L. Morel S. Durand 《Journal of Geodesy》2008,82(6):357-371
In this paper we examine OTL displacements detected by GPS stations of a dedicated campaign and validate ocean tide models.
Our area of study is the continental shelf of Brittany and Cotentin in France. Brittany is one of the few places in the world
where tides provoke loading displacements of ∼10–12 cm vertically and a few cm horizontally. Ocean tide models suffer from
important discrepancies in this region. Seven global and regional ocean tide models were tested: FES2004 corrected for K2,
TPXO.7.0, TPXO.6.2, GOT00.2, CSR4.0, NAO.99b and the most recent regional grids of the North East Atlantic (NEA2004). These
gridded amplitudes and phases of ocean tides were convolved in order to get the predicted OTL displacements using two different
algorithms. Data over a period of 3.5 months of 8 GPS campaign stations located on the north coast of Brittany are used, in
order to evaluate the geographical distribution of the OTL effect. We have modified and implemented new algorithms in our
GPS software, GINS 7.1. GPS OTL constituents are estimated based on 1-day batch solutions. We compare the observed GPS OTL
constituents of M2, S2, N2 and K1 waves with the selected ocean tide models on global and regional grids. Large phase-lag and amplitude discrepancies over
20° and 1.5 cm in the vertical direction in the semi-diurnal band of M2 between predictions and GPS/models are detected in the Bay of Mont St-Michel. From a least squares spectral analysis of the
GPS time-series, significant harmonic peaks in the integer multiples of the orbital periods of the GPS satellites are observed,
indicating the existence of multipath effects in the GPS OTL constituents. The GPS OTL observations agree best with FES2004,
NEA2004, GOT00.2 and CSR4.0 tide models. 相似文献
55.
Questions persist concerning the earthquake potential of the populous and industrial Lake Ontario (Canada–USA) area. Pertinent to those questions is whether the major fault zone that extends along the St. Lawrence River valley, herein named the St. Lawrence fault zone, continues upstream along the St. Lawrence River valley at least as far as Lake Ontario or terminates near Cornwall (Ontario, Canada)–Massena (NY, USA). New geological studies uncovered paleotectonic bedrock faults that are parallel to, and lie within, the projection of that northeast-oriented fault zone between Cornwall and northeastern Lake Ontario, suggesting that the fault zone continues into Lake Ontario. The aforementioned bedrock faults range from meters to tens of kilometers in length and display kinematically incompatible displacements, implying that the fault zone was periodically reactivated in the study area. Beneath Lake Ontario the Hamilton–Presqu'ile fault lines up with the St. Lawrence fault zone and projects to the southwest where it coincides with the Dundas Valley (Ontario, Canada). The Dundas Valley extends landward from beneath the western end of the lake and is marked by a vertical stratigraphic displacement across its width. The alignment of the Hamilton–Presqu'ile fault with the St. Lawrence fault zone strongly suggests that the latter crosses the entire length of Lake Ontario and continues along the Dundas Valley.The Rochester Basin, an east–northeast-trending linear trough in the southeastern corner of Lake Ontario, lies along the southern part of the St. Lawrence fault zone. Submarine dives in May 1997 revealed inclined layers of glaciolacustrine clay along two different scarps within the basin. The inclined layers strike parallel to the long dimension of the basin, and dip about 20° to the north–northwest suggesting that they are the result of rigid-body rotation consequent upon post-glacial faulting. Those post-glacial faults are growth faults as demonstrated by the consistently greater thickness, unit-by-unit, of unconsolidated sediments on the downthrown (northwest) side of the faults relative to their counterparts on the upthrown (southeast) side. Underneath the western part of Lake Ontario is a monoclinal warp that displaces the glacial and post-glacial sediments, and the underlying bedrock–sediment interface. Because of the post-glacial growth faults and the monoclinal warp the St. Lawrence fault zone is inferred to be tectonically active beneath Lake Ontario. Furthermore, within the lake it crosses at least five major faults and fault zones and coexists with other neotectonic structures. Those attributes, combined with the large earthquakes associated with the St. Lawrence fault zone well to the northeast of Lake Ontario, suggest that the seismic risk in the area surrounding and including Lake Ontario is likely much greater than previously believed. 相似文献
56.
Deep weathering of basalt-hosted sulphidic gold mineralisation has resulted in remobilisation of the gold and the formation of a supergene deposit. The deposit occurs beneath an ephemeral lake system and is at least partially saturated by highly saline groundwater. A general downward movement of an iron redox front associated with the weathering has controlled the distribution of the gold and its morphology. It is unusual in that the high fineness gold crystals formed are coarse and well-preserved. Small octahedra, up to 50 μm, are the most abundant form of gold crystals but large, up to 3 mm, octahedral plates are common. Crystal morphology variations described here suggest that the gold is initially precipitated as euhedral octahedra and plates. Subsequent dissolution and recrystallisation associated with fluctuations in the chemical environment above the redox front has led to the development of the more common irregular dendritic or wire gold forms observed in other supergene deposits. 相似文献
57.
Allen P. Nutman Vickie C. Bennett Clark R. L. Friend Kenji Horie Hiroshi Hidaka 《Contributions to Mineralogy and Petrology》2007,154(4):385-408
The Eoarchaean (>3,600 Ma) Itsaq Gneiss Complex of southern West Greenland is dominated by polyphase orthogneisses with a
complex Archaean tectonothermal history. Some of the orthogneisses have c. 3,850 Ma zircons, and they vary from rare single
phase metatonalites to more common complexly banded migmatites. This is due to heterogeneous strain, in situ anatexis and
granitic veining superimposed during younger tectonothermal events. In the single-phase tonalites with c. 3,850 Ma zircon,
oscillatory-zoned prismatic zircon is all 3,850 Ma old, but shows patchy ancient loss of radiogenic Pb. SHRIMP spot analyses
and laser ablation ICP-MS depth profiling show that thin (usually < 10 μm) younger (3,660–3,590 Ma and Neoarchaean) shells
of lower Th/U metamorphic zircon are present on these 3,850 Ma zircons. Several samples with this simple zircon population
occur on islands near Akilia. In contrast, migmatites usually contain more complex zircon populations, with often more than
one generation of igneous zircon present. Additional zircon dating of banded gneisses across the Complex shows that samples
with c. 3,850 Ma igneous zircon are not just a phenomenon restricted to Akilia and adjacent islands. For example, migmatites
from Itilleq (c. 65 km from Akilia) contain variable amounts of oscillatory-zoned 3,850 Ma and 3,650 Ma zircon, interpreted,
respectively, as the rock age and the time of crustal melting under Eoarchaean metamorphism. With only 110–140 ppm Zr in the
tonalites and likely magmatic temperatures of >850°C, zircon solubility–melt composition relationships show that they were
only one-third saturated in zircon. Any zircon entrained in the precursor magmas would thus have been highly soluble. Combined
with the cathodoluminesence imaging, this demonstrates that the c. 3,850 Ma oscillatory zoned zircon crystallised out of the
melt and hence gives a magmatic age. Thus the rare well-preserved tonalites and palaeosome in migmatites testify that c. 3,850 Ma
quartzo–feldspathic rocks are a widespread (but probably minor) component in the Itsaq Gneiss Complex. C. 3,850 Ma zircon
with negative Eu anomalies (showing growth in felsic systems) also occurs as detrital grains in rare c. 3,800 Ma metaquartzites
and as inherited grains in some 3,660 Ma granites (sensu stricto). These demonstrate that still more c. 3,850 Ma rocks were present, but were recycled into Eoarchaean sediments and crustally
derived granites. The major and trace element characteristics (e.g. LREE enrichment, HREE depletion, low MgO) of the best-preserved
c. 3,850 Ma rocks are typical of Archaean TTG suites, and thus argue for crust formation processes involving important contributions
from melting of hydrated mafic crust to the earliest Archaean. Five c. 3,850 Ma tonalites were selected as the best preserved
on the basis of field criteria and zircon petrology. Four of these samples have overlapping initial ɛNd (3,850 Ma) values from +2.9 to +3.6± 0.5, with the fourth having a slightly lower value of +0.6. These data provide additional
evidence for a markedly LREE-depleted early terrestrial mantle reservoir. The role of c. 3,850 Ma crust should be considered
in interpreting isotope signatures of the younger (3,800–3,600 Ma) rocks of the Itsaq Gneiss Complex.
Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users. 相似文献
58.
Alaska is considered to be tectonically comprised of five elongate blocks separated by transcurrent faults formed prior to rotation which enter the state from the southeast and continue westward to the edge of the Bering Sea continental shelf. We propose an additional, inactive fault, indicated by gravity and magnetic data and other observations, to extend between the Bering Strait and the Arctic Ocean continental shelf east of the Northwind escarpment, separating northern Alaska from northeast Siberia. Near the center of the state the faults are bent, concave to the south, about the north-south axis of the so-called Alaska orocline. In our reconstruction the blocks have rotated from a position whereby the north slope was adjacent to Banks Island of the Canadian basin. During the rotation the northernmost, or Brooks block, was squeezed, up to 15% in the western end, to its present width. After rotation, when the three southern blocks were in their present position, the Brooks block and the next block to the south were pushed eastward by North America moving against Siberia, forming the bend in the British-Richardson-Ogilvie Mountains we call the Ogilvie orocline. 相似文献
59.
The genesis of Lower Eocene calcite-cemented columns, “pisoid”-covered structures and horizontal interbeds, clustered in dispersed outcrops in the Pobiti Kamani area (Varna, Bulgaria) is related to fossil processes of hydrocarbon migration. Field observations, petrography and stable isotope geochemistry of the cemented structures and associated early-diagenetic veins, revealed that varying seepage rates of a single, warm hydrocarbon-bearing fluid, probably ascending along active faults, controlled the type of structure formed and its geochemical signature. Slow seepage allowed methane to oxidize within the sediment under ambient seafloor conditions (δ18O = − 1 ± 0.5‰ V-PDB), explaining columns' depleted δ13C ratios of − 43‰. Increasing seepage rates caused methane to emanate into the water column (δ13C = − 8‰) and raised precipitation temperatures (δ18O = − 8‰). Calcite-cemented conduits formed and upward migrating fluids also affected interbed cementation. Even higher-energy fluid flow and temperatures likely controlled the formation of “pisoids”, whereby sediment was whirled up and cemented. 相似文献
60.
S-S. Xu A. F. Nieto-Samaniego S. A. Alaniz-Álvarez L. G. Velasquillo-Martínez 《International Journal of Earth Sciences》2006,95(5):841-853
The power-law exponent (n) in the equation: D=cL
n
, with D = maximum displacement and L = fault length, would be affected by deviations of fault trace length. (1) Assuming n=1, numerical simulations on the effect of sampling and linkage on fault length and length–displacement relationship are done in this paper. The results show that: (a) uniform relative deviations, which means all faults within a dataset have the same relative deviation, do not affect the value of n; (b) deviations of the fault length due to unresolved fault tip decrease the values of n and the deviations of n increase with the increasing length deviations; (c) fault linkage and observed dimensions either increase or decrease the value of n depending on the distribution of deviations within a dataset; (d) mixed deviations of the fault lengths are either negative or positive and cause the values of n to either decrease or increase; (e) a dataset combined from two or more datasets with different values of c and orders of magnitude also cause the values of n to deviate. (2) Data including 19 datasets and spanning more than eight orders of fault length magnitudes (10−2–105 m) collected from the published literature indicate that the values of n range from 0.55 to 1.5, the average value being 1.0813, and the peak value of n
d (double regression) is 1.0–1.1. Based on above results from the simulations and published data, we propose that the relationship between the maximum displacement and fault length in a single tectonic environment with uniform mechanical properties is linear, and the value of n deviated from 1 is mainly caused by the sampling and linkage effects. 相似文献