首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   433篇
  免费   13篇
  国内免费   2篇
测绘学   10篇
大气科学   18篇
地球物理   92篇
地质学   159篇
海洋学   25篇
天文学   98篇
自然地理   46篇
  2021年   6篇
  2020年   11篇
  2019年   8篇
  2018年   6篇
  2017年   8篇
  2016年   13篇
  2015年   6篇
  2014年   13篇
  2013年   26篇
  2012年   14篇
  2011年   8篇
  2010年   12篇
  2009年   20篇
  2008年   13篇
  2007年   13篇
  2006年   18篇
  2005年   13篇
  2004年   10篇
  2003年   13篇
  2002年   18篇
  2001年   5篇
  2000年   6篇
  1999年   4篇
  1998年   5篇
  1997年   6篇
  1996年   6篇
  1995年   5篇
  1992年   8篇
  1989年   3篇
  1988年   4篇
  1987年   3篇
  1984年   6篇
  1983年   6篇
  1982年   3篇
  1977年   3篇
  1976年   6篇
  1975年   9篇
  1974年   5篇
  1973年   6篇
  1970年   4篇
  1962年   4篇
  1961年   3篇
  1960年   6篇
  1959年   4篇
  1956年   3篇
  1955年   4篇
  1952年   3篇
  1940年   3篇
  1937年   4篇
  1936年   3篇
排序方式: 共有448条查询结果,搜索用时 15 毫秒
41.
Sense of place, including an individual’s attitudes toward specific geographic settings, is generally predicted to influence willingness to engage in place-protective behaviors. Relatively little research, however, has empirically examined the influence of people’s attitudes toward a place on their willingness to pay for environmental protection. Using the example of a payment for ecosystem services (PES) initiative in the McKenzie River watershed, Oregon, USA, we found that place attitudes were a significant predictor of respondents’ willingness to pay for a program designed to benefit drinking water quality. These results suggest that connecting conservation actions to landscapes that are meaningful to people may increase their financial support for PES and other conservation programs. While program managers have little or no influence over stakeholders’ political ideology, gender, or income, managers may be able to influence prospective PES buyers’ awareness and attitudes through targeted communications, thereby potentially increasing support for place-based conservation efforts.  相似文献   
42.
Vennell  Ross  Scheel  Max  Weppe  Simon  Knight  Ben  Smeaton  Malcolm 《Ocean Dynamics》2021,71(4):423-437
Ocean Dynamics - Lagrangian particle tracking, based on currents derived from hydrodynamic models, is an important tool in quantifying bio-physical transports in the ocean. Particle tracking in the...  相似文献   
43.
本文分析了长江三角洲南翼绍兴县的区域条件和社会经济发展状况,归纳了其城市化的特征,说明该县也具有典型的半城市化地区特征。作者认为,在后发展国家,人口稠密地区的发展,必然会形成半城市化现象;这类地区的小城镇还将经历“自下而上”逐步逐级的集聚发展;分散状态的半城市化的行政区需要加强其中心城市建设,但需与上级区域的城镇体系发展相协调,不宜构造超越其服务区域的大型城市。  相似文献   
44.
45.
Max Kuperus 《Solar physics》1996,169(2):349-356
A model is presented for the origin of inverse polarity magnetic fields in the perpendicular as well as in the axial direction of quiescent prominences. The model is based on the presence of a discrete coronal arcade structure where magnetic separating surfaces can be identified. On the crossing of these separating surfaces magnetic reconnection driven by photospheric shear and converging motions can create the observed field direction in quiescent prominences.Dedicated to Cornelis de Jager  相似文献   
46.
Cometary material inevitably undergoes chemical changes before and on leaving the nucleus. In seeking to explain comets as the origin of many IDPs (interplanetary dust particles), an understanding of potential surface chemistry is vital. Grains are formed and transformed at the nucleus surface; much of the cometary volatiles may arise from the organic material. In cometary near-surface permafrost, one expects cryogenic chemistry with crystal growth and isotope. This could be the hydrous environment where IDPs form. Seasonal and geographic variations imply a range of environmental conditions and surface evolution. Interplanetary dust impacts and electrostatic forces also have roles in generating cometary dust. The absence of predicted cometary dust envelopes is compatible with the wide range of particle structures and compositions. Study of IDPs would distinguish between this model and alternatives that see comets as aggregates of core-mantle grains built in interstellar clouds.  相似文献   
47.
Latest Pleistocene and Holocene glacier variations in the European Alps   总被引:1,自引:0,他引:1  
In the Alps, climatic conditions reflected in glacier and rock glacier activity in the earliest Holocene show a strong affinity to conditions in the latest Pleistocene (Younger Dryas). Glacier advances in the Alps related to Younger Dryas cooling led to the deposition of Egesen stadial moraines. Egesen stadial moraines can be divided into three or in some cases even more phases (sub-stadials). Moraines of the earliest and most extended advance, the Egesen maximum, stabilized at 12.2 ± 1.0 ka based on 10Be exposure dating at the Schönferwall (Tyrol, Austria) and the Julier Pass-outer moraine (Switzerland). Final stabilization of moraines at the end of the Egesen stadial was at 11.3 ± 0.9 ka as shown by 10Be data from four sites across the Alps. From west to east the sites are Piano del Praiet (northwestern Italy), Grosser Aletschgletscher (central Switzerland), Julier Pass-inner moraine (eastern Switzerland), and Val Viola (northeastern Italy). There is excellent agreement of the 10Be ages from the four sites. In the earliest Holocene, glaciers in the northernmost mountain ranges advanced at around 10.8 ± 1.1 ka as shown by 10Be data from the Kartell site (northern Tyrol, Austria). In more sheltered, drier regions rock glacier activity dominated as shown, for example, at Julier Pass and Larstig valley (Tyrol, Austria). New 10Be dates presented here for two rock glaciers in Larstig valley indicate final stabilization no later than 10.5 ± 0.8 ka. Based on this data, we conclude the earliest Holocene (between 11.6 and about 10.5 ka) was still strongly affected by the cold climatic conditions of the Younger Dryas and the Preboreal oscillation, with the intervening warming phase having had the effect of rapid downwasting of Egesen glaciers. At or slightly before 10.5 ka rapid shrinkage of glaciers to a size smaller than their late 20th century size reflects markedly warmer and possibly also drier climate. Between about 10.5 ka and 3.3 ka conditions in the Alps were not conducive to significant glacier expansion except possibly during rare brief intervals. Past tree-line data from Kaunertal (Tyrol, Austria) in concert with radiocarbon and dendrochronologically dated wood fragments found recently in the glacier forefields in both the Swiss and Austrian Alps points to long periods during the Holocene when glaciers were smaller than they were during the late 20th century. Equilibrium line altitudes (ELA) were about 200 m higher than they are today and about 300 m higher in comparison to Little Ice Age (LIA) ELAs. The Larstig rock glacier site we dated with 10Be is the type area for a postulated mid-Holocene cold period called the Larstig oscillation (presumed age about 7.0 ka). Our data point to final stabilization of those rock glaciers in the earliest Holocene and not in the middle Holocene. The combined data indicate there was no time window in the middle Holocene long enough for rock glaciers of the size and at the elevation of the Larstig site to have formed. During the short infrequent cold oscillations between 10.5 and 3.3 ka small glaciers (less than several km2) may have advanced to close to their LIA dimensions. Overall, the cold periods were just too short for large glaciers to advance. After 3.3 ka, climate conditions became generally colder and warm periods were brief and less frequent. Large glaciers (for example Grosser Aletschgletscher) advanced markedly at 3.0–2.6 ka, around 600 AD and during the LIA. Glaciers in the Alps attained their LIA maximum extents in the 14th, 17th, and 19th centuries, with most reaching their greatest LIA extent in the final 1850/1860 AD advance.  相似文献   
48.
49.
50.
If we are to limit global warming to 2 °C, all sectors in all countries must reduce their emissions of GHGs to zero not later than 2060–2080. Zero-emission options have been less explored and are less developed in the energy-intensive basic materials industries than in other sectors. Current climate policies have not yet motivated major efforts to decarbonize this sector, and it has been largely protected from climate policy due to the perceived risks of carbon leakage and a focus on short-term reduction targets to 2020. We argue that the future global climate policy regime must develop along three interlinked and strategic lines to facilitate a deep decarbonization of energy-intensive industries. First, the principle of common but differentiated responsibility must be reinterpreted to allow for a dialogue on fairness and the right to development in relation to industry. Second, a greater focus on the development, deployment and transfer of technology in this sector is called for. Third, the potential conflicts between current free trade regimes and motivated industrial policies for deep decarbonization must be resolved. One way forward is to revisit the idea of sectoral approaches with a broader scope, including not only emission reductions, but recognizing the full complexity of low-carbon transitions in energy-intensive industries. A new approach could engage industrial stakeholders, support technology research, development and demonstration and facilitate deployment through reducing the risk for investors. The Paris Agreement allows the idea of sectoral approaches to be revisited in the interests of reaching our common climate goals.

Policy relevance

Deep decarbonization of energy-intensive industries will be necessary to meet the 2 °C target. This requires major innovation efforts over a long period. Energy-intensive industries face unique challenges from both innovation and technical perspectives due to the large scale of facilities, the character of their global markets and the potentially high mitigation costs. This article addresses these challenges and discusses ways in which the global climate policy framework should be developed after the Paris Agreement to better support transformative change in the energy-intensive industries.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号