首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   198篇
  免费   8篇
  国内免费   3篇
测绘学   7篇
大气科学   17篇
地球物理   43篇
地质学   70篇
海洋学   13篇
天文学   42篇
自然地理   17篇
  2022年   1篇
  2021年   4篇
  2020年   6篇
  2019年   9篇
  2018年   5篇
  2017年   9篇
  2016年   15篇
  2015年   6篇
  2014年   8篇
  2013年   6篇
  2012年   13篇
  2011年   19篇
  2010年   9篇
  2009年   33篇
  2008年   13篇
  2007年   8篇
  2006年   8篇
  2005年   3篇
  2004年   3篇
  2003年   4篇
  2002年   8篇
  2001年   1篇
  2000年   2篇
  1999年   1篇
  1998年   1篇
  1997年   1篇
  1996年   1篇
  1995年   2篇
  1992年   2篇
  1989年   1篇
  1988年   1篇
  1986年   1篇
  1985年   1篇
  1983年   1篇
  1981年   1篇
  1977年   1篇
  1973年   1篇
排序方式: 共有209条查询结果,搜索用时 15 毫秒
191.
The geothermal use of concrete geostructures (piles, walls and slabs) is an environmentally friendly way of cooling and heating buildings. With such geothermal structures, it is possible to transfer energy from the ground to fluid‐filled pipes cast in concrete and then to building environments. To improve the knowledge in the field of geothermal structures, the behaviour of a pile subjected to thermo‐mechanical loads is studied in situ. The aim is to study the increased loads on pile due to thermal effects. The maximum thermal increment applied to the pile is on the order of 21°C and the mechanical load reached 1300 kN. Coupled multi‐physical finite element modelling is carried out to simulate the observed experimental results. It is shown that the numerical model is able to reproduce the most significant thermo‐mechanical effects. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   
192.
We present here a plasma physics experiment which makes it possible to simulate, in a naive yet useful way, the formation of polar lights. It involves shooting electrons at a magnetized sphere placed in a vacuum chamber. This experiment, inspired by K. Birkeland’s Terrella, built at the turn of 19th century, allows the visualization of very many geophysical and astrophysical situations. Although delicate, it is feasible at undergraduate level.  相似文献   
193.
194.
We model the cratering of the Moon and terrestrial planets from the present knowledge of the orbital and size distribution of asteroids and comets in the inner Solar System, in order to refine the crater chronology method. Impact occurrences, locations, velocities and incidence angles are calculated semi-analytically, and scaling laws are used to convert impactor sizes into crater sizes. Our approach is generalizable to other moons or planets. The lunar cratering rate varies with both latitude and longitude: with respect to the global average, it is about 25% lower at (±65°N, 90°E) and larger by the same amount at the apex of motion (0°N, 90°W) for the present Earth-Moon separation. The measured size-frequency distributions of lunar craters are reconciled with the observed population of near-Earth objects under the assumption that craters smaller than a few kilometers in diameter form in a porous megaregolith. Varying depths of this megaregolith between the mare and highlands is a plausible partial explanation for differences in previously reported measured size-frequency distributions. We give a revised analytical relationship between the number of craters and the age of a lunar surface. For the inner planets, expected size-frequency crater distributions are calculated that account for differences in impact conditions, and the age of a few key geologic units is given. We estimate the Orientale and Caloris basins to be 3.73 Ga old, and the surface of Venus to be 240 Ma old. The terrestrial cratering record is consistent with the revised chronology and a constant impact rate over the last 400 Ma. Better knowledge of the orbital dynamics, crater scaling laws and megaregolith properties are needed to confidently assess the net uncertainty of the model ages that result from the combination of numerous steps, from the observation of asteroids to the formation of craters. Our model may be inaccurate for periods prior to 3.5 Ga because of a different impactor population, or for craters smaller than a few kilometers on Mars and Mercury, due to the presence of subsurface ice and to the abundance of large secondaries, respectively. Standard parameter values allow for the first time to naturally reproduce both the size distribution and absolute number of lunar craters up to 3.5 Ga ago, and give self-consistent estimates of the planetary cratering rates relative to the Moon.  相似文献   
195.
196.
The structure of the upper ocean and surface atmospheric conditions are described during a ship cruise across the central Indian Ocean from December 1995 to January 1996. In situ data on currents, temperature, salinity and surface heat fluxes are described and compared with expected climatological values. Thermocline uplift in the 6-7°S latitude band is linked to the cyclonic shear of near-surface currents. A comparison of quiescent and windy periods demonstrates that evaporative fluxes become amplified near cyclonic vortices fed by southerly meridional winds. The ocean density structure is influenced by salinity gradients, driven by the precipitation-evaporation balance. Near the inter-tropical convergence zone (ITCZ), freshwater fluxes create a stable surface layer and helps to maintain the eastward equatorial counter-current. An analysis of the atmospheric boundary layer from NCEP re-analysis data seeks to place the in situ results into the context of weather conditions at the time of the cruise. Further studies of this kind will improve our understanding of relationships between the Indian Ocean monsoon and surrounding climates.  相似文献   
197.
Changes in extreme precipitation should be one of the primary impacts of climate change (CC) in urban areas. To assess these impacts, rainfall data from climate models are commonly used. The main goal of this paper is to report on the state of knowledge and recent works on the study of CC impacts with a focus on urban areas, in order to produce an integrated review of various approaches to which future studies can then be compared or constructed. Model output statistics (MOS) methods are increasingly used in the literature to study the impacts of CC in urban settings. A review of previous works highlights the non-stationarity nature of future climate data, underscoring the need to revise urban drainage system design criteria. A comparison of these studies is made difficult, however, by the numerous sources of uncertainty arising from a plethora of assumptions, scenarios, and modeling options. All the methods used do, however, predict increased extreme precipitation in the future, suggesting potential risks of combined sewer overflow frequencies, flooding, and back-up in existing sewer systems in urban areas. Future studies must quantify more accurately the different sources of uncertainty by improving downscaling and correction methods. New research is necessary to improve the data validation process, an aspect that is seldom reported in the literature. Finally, the potential application of non-stationarity conditions into generalized extreme value (GEV) distribution should be assessed more closely, which will require close collaboration between engineers, hydrologists, statisticians, and climatologists, thus contributing to the ongoing reflection on this issue of social concern.  相似文献   
198.
The links between flood frequency and rates of channel migration are poorly defined in the ephemeral rivers typical of arid regions. Exploring these links in desert fluvial landscapes would augment our understanding of watershed biogeochemistry and river morphogenesis on early Earth (i.e. prior to the greening of landmasses). Accordingly, we analyse the Mojave River (California), one of the largest watercourses in the Great Basin of the western United States. We integrate discharge records with channel-migration rates derived from dynamic time-warping analysis and chronologically calibrated subsidence rates, thereby constraining the river's formative conditions. Our results reveal a slight downstream decrease in bankfull discharge on the Mojave River, rather than the downstream increase typically exhibited by perennial streams. Yet, the number of days per year during which the channel experiences bankfull or higher stages is roughly maintained along the river's length. Analysis of historical peak flood records suggests that the incidence of channel-formative events responds to modulation in watershed runoff due to the precipitation in the river's headwaters over decades to centuries. Our integrated analysis finally suggests that, while maintaining hydraulic geometries that are fully comparable with many other rivers worldwide, ephemeral desert rivers akin to the Mojave are capable of generating a surprisingly wide range of depositional geometries in the stratigraphic record. © 2020 John Wiley & Sons, Ltd.  相似文献   
199.
The issue of Regional Climate Model (RCM) domain size is studied here by using a perfect-model approach, also known as the Big-Brother experiment. It is known that the control exerted by the lateral boundary conditions (LBC) on nested simulations increases when reducing the domain size. The large-scale component of the simulation that is forced by the LBC influences the small-scale features that develop along the large-scale flow. Small-scale transient eddies need space and time to develop sufficiently however, and small domains can impede their development. Our tests performed over eastern North America in summer reveal that the small-scale features are systematically underestimated over the entire domain, even for domain as large as 140 by 140 grid points. This result differs from that obtained in winter where the small scales were mainly underestimated on the west (inflow) side of the domain. This difference is due to the circulation regime over Eastern Canada, which is characterized by weak and variable flow in summer, but strong and westerly flow in winter. For both seasons, the small-scale transient-eddy amplitudes are systematically underestimated at higher levels, but this problem is less severe in summer. Overall the model is more skilful in regenerating the small scales in summer than in winter for comparable domain sizes, which can be related to the weaker summer flow and stronger physical processes occurring in this season.  相似文献   
200.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号