首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   334篇
  免费   26篇
  国内免费   10篇
测绘学   5篇
大气科学   42篇
地球物理   74篇
地质学   149篇
海洋学   14篇
天文学   68篇
综合类   3篇
自然地理   15篇
  2023年   1篇
  2022年   4篇
  2021年   4篇
  2020年   4篇
  2019年   9篇
  2018年   12篇
  2017年   19篇
  2016年   19篇
  2015年   17篇
  2014年   19篇
  2013年   20篇
  2012年   23篇
  2011年   23篇
  2010年   21篇
  2009年   21篇
  2008年   24篇
  2007年   12篇
  2006年   14篇
  2005年   8篇
  2004年   12篇
  2003年   14篇
  2002年   15篇
  2001年   7篇
  2000年   6篇
  1999年   7篇
  1998年   3篇
  1997年   5篇
  1996年   2篇
  1994年   1篇
  1993年   1篇
  1992年   1篇
  1991年   3篇
  1988年   1篇
  1987年   1篇
  1986年   3篇
  1985年   2篇
  1984年   1篇
  1983年   1篇
  1982年   3篇
  1981年   1篇
  1980年   1篇
  1977年   1篇
  1975年   1篇
  1973年   1篇
  1971年   1篇
  1970年   1篇
排序方式: 共有370条查询结果,搜索用时 156 毫秒
111.
The South Poroto–Rungwe geothermal field, in the northern part of the Malawi rift, Tanzania divides in two main areas. The relatively high altitude northern area around the main Ngozi, Rungwe, Tukuyu and Kyejo volcanoes, is characterised by cold and gas-rich springs. In contrast, hot springs occur in the southern and low-altitude area between the Kyela and Livingstone faults. The isotopic signature of the almost stagnant, cold springs of the Northern district is clearly influenced by H2O–CO2(g) exchange as evidenced from negative oxygen-shifts in the order of few deltas permil. In contrast, the isotopic signature of waters discharged from the hot springs of the Southern district is markedly less affected by the H2O–CO2(g) interaction. This evidence is interpreted as an effect of the large, permanent outflow of these springs, which supports the hypothesis of a regional-scale recharge of the major thermal springs. Measurements of carbon isotope variations of the dissolved inorganic carbon of waters and CO2(g) from the Northern and Southern springs support a model of CO2(g)-driven reactivity all over the investigated area. Our combined chemical and isotopic results show that the composition of hot springs is consistent with a mixing between (i) cold surface fresh (SFW) and (ii) Deep Hot Mineralised (DHMW) Water, indicating that the deep-originated fluids also supply most of the aqueous species dissolved in the surface waters used as local potable water. Based on geothermometric approaches, the temperature of the deep hydrothermal system has been estimated to be higher than 110 °C up to 185 °C, in agreement with the geological and thermal setting of the Malawi rift basin. Geochemical data point to (i) a major upflow zone of geothermal fluids mixed with shallow meteoric waters in the Southern part of the province, and (ii) gas absorption phenomena in the small, perched aquifers of the Northern volcanic highlands.  相似文献   
112.
113.
114.
115.
This paper investigates whether an inefficient allocation of abatement due to constraints on the use of currently available low carbon mitigation options can promote innovation in new technologies and have a positive impact on welfare. We focus on the case of a nuclear power phase-out and endogenous technical change in energy efficiency and alternative low carbon technologies. The research is inspired by the re-thinking about nuclear power deployment which took place in some countries, especially in Western Europe, after the Fukushima accident in March 2011. The analysis uses an Integrated Assessment Model, WITCH, which features multiple externalities related to greenhouse gas emissions and innovation market failures. Our results show that phasing out nuclear power stimulates R&D investments and deployment of technologies with large learning potential. The resulting technology benefits that would not otherwise occur due to intertemporal and international externalities almost completely offset the economic costs of foregoing nuclear power. The extent of technology benefits depends on the stringency of the climate policy and is distributed unevenly across countries.  相似文献   
116.
This article presents the synthesis of results from the Stanford Energy Modeling Forum Study 27, an inter-comparison of 18 energy-economy and integrated assessment models. The study investigated the importance of individual mitigation options such as energy intensity improvements, carbon capture and storage (CCS), nuclear power, solar and wind power and bioenergy for climate mitigation. Limiting the atmospheric greenhouse gas concentration to 450 or 550 ppm CO2 equivalent by 2100 would require a decarbonization of the global energy system in the 21st century. Robust characteristics of the energy transformation are increased energy intensity improvements and the electrification of energy end use coupled with a fast decarbonization of the electricity sector. Non-electric energy end use is hardest to decarbonize, particularly in the transport sector. Technology is a key element of climate mitigation. Versatile technologies such as CCS and bioenergy are found to be most important, due in part to their combined ability to produce negative emissions. The importance of individual low-carbon electricity technologies is more limited due to the many alternatives in the sector. The scale of the energy transformation is larger for the 450 ppm than for the 550 ppm CO2e target. As a result, the achievability and the costs of the 450 ppm target are more sensitive to variations in technology availability.  相似文献   
117.
A deep low in sea-level pressure is present from May to September over Pakistan and northwestern India (hereafter, the Pak?CIndia low). It is often referred as the ??heat?? low to convey the significance of surface thermal effects reckoned to be important for its origin. The present analysis, rooted in observations and diagnostic modeling, suggests that the Pak?CIndia low is influenced both by regional and remote forcing. Regionally, the influence of Hindu Kush mountains is found to be stronger than the impact of land-surface heating and attendant sensible heating of the planetary boundary layer, questioning the suitability of the ??heat?? label in canonical references to this circulation feature. Observational analysis indicates that the notable May-to-June deepening of the Pak?CIndia low and its further deepening in July, however, arises from remote forcing??the development of monsoon deep-convection over the Bay of Bengal and eastern India in June and July. It is hypothesized that the associated upstream descent over Iran?CTurkmenistan?CAfghanistan (i.e. east of the Caspian Sea) and related low-level northerlies over the Elburz?CZagros?CHindu Kush mountains contribute to the strengthening of the Pak?CIndia low in June (and July) from interaction with regional orography.  相似文献   
118.
The Averno 2 eruption (3,700 ± 50 a B.P.) was an explosive low-magnitude event characterized by magmatic and phreatomagmatic explosions, generating mainly fall and surge beds, respectively. It occurred in the Western sector of the Campi Flegrei caldera (Campanian Region, South Italy) at the intersection of two active fault systems, oriented NE and NW. The morphologically complex crater area, largely filled by the Averno lake, resulted from vent activation and migration along the NE-trending fault system. The eruption generated a complex sequence of pyroclastic deposits, including pumice fall deposits in the lower portion, and prevailing surge beds in the intermediate-upper portion. The pyroclastic sequence has been studied through stratigraphical, morphostructural and petrological investigations, and subdivided into three members named A through C. Member A was emplaced during the first phase of the eruption mainly by magmatic explosions which generated columns reaching a maximum height of 10 km. During this phase the eruption reached its climax with a mass discharge rate of 3.2 106 kg/s. Intense fracturing and fault activation favored entry of a significant amount of water into the system, which produced explosions driven by variably efficient water-magma interaction. These explosions generated wet to dry surge deposits that emplaced Member B and C, respectively. Isopachs and isopleths maps, as well as areal distribution of ballistic fragments and facies variation of surge deposits allow definition of four vents that opened along a NE oriented, 2 km long fissure. The total volume of magma extruded during the eruption has been estimated at about 0.07 km3 (DRE). The erupted products range in composition from initial, weakly peralkaline alkali-trachyte, to last-emplaced alkali-trachyte. Isotopic data and modeling suggest that mixing occurred during the Averno 2 eruption between a more evolved, less radiogenic stored magma, and a less evolved, more radiogenic magma that entered the shallow reservoir to trigger the eruption. The early phases of the eruption, during which the vent migrated from SW to the center of the present lake, were fed by the more evolved, uppermost magma, while the following phases extruded the less evolved, lowermost magma. Integration of the geological and petrological results suggests that the Averno 2 complex eruption was fed from a dyke-shaped shallow reservoir intruded into the NE-SW fault system bordering to the west the La Starza resurgent block, within the caldera floor.  相似文献   
119.
Ash fallout collected during 4 days of sampling at Stromboli confirms that a crystal-rich (HP) degassed magma erupts during the Strombolian explosions that are characteristic of the normal activity of this volcano. We identified 3 different types of juvenile ash fragments (fluidal, spongy and dense), which formed through different mechanisms of fragmentation of the low-viscosity, physically heterogeneous (in terms of the size and spatial distribution of bubbles) shoshonitic magma. A small amount (less than 3 vol%) of volatile-rich magma with low porphyricity (LP), erupted as highly vesicular ash fragments, has been collected, together with the HP magma, during normal strombolian explosions. Laboratory experiments and the morphological, textural and compositional investigations of ash fragments reveal that the LP ash is fresh and not recycled from the last paroxysm (15 March 2007). We suggest that small droplets of LP magma are dragged to the surface by the time-variable but persistent supply of deep derived CO2-rich gas bubbles. This coupled ascent of bubbles and LP melts is transient and does not perturb the dynamics of the HP magma within the shallow reservoir. This finding provides a new perspective on how the Stromboli volcano works and has important implications for monitoring strategies.  相似文献   
120.
The combination of age determination and geochemical tracers allows understanding the source evolution during magmatism. We studied the Sapat Complex, in the exhumed Cretaceous Kohistan Paleo-Island Arc, to reconstruct the formation of the juvenile lower arc crust and the evolution of the mantle source during arc magmatism. High precision ID-TIMS U/Pb dating on zircon, shows that a protracted period of magmatic accretion formed the Sapat Complex between 105 and 99 Ma. Since continued melt percolation processes that formed the lower crust obscured the original bulk rock Nd–Pb–Sr isotopic composition, we rely on the Hf isotopic composition of zircons of different ages to unravel the source evolution. Nd and Pb bulk isotopic compositions coupled with Hf isotopic composition on zircons allow reconstructing a geodynamical scenario for the Sapat Complex, and the Cretaceous history of the Arc. We suggest that trenchward migration of the hot mantle source at 105 Ma explains the small heterogeneous εHf signal between + 14 and + 16. This heterogeneity vanished within ca. 2 million years, and the εHf of the source evolved from + 16 to + 14 at 99 Ma. Integrated to the Kohistan Cretaceous history, which has a baseline of εHf  14, these data pinpoint two geodynamical events, with slab retreat and the formation of the Sapat Complex followed by splitting of the Kohistan island arc at 85 Ma.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号