首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   192篇
  免费   12篇
  国内免费   1篇
测绘学   4篇
大气科学   7篇
地球物理   56篇
地质学   85篇
海洋学   7篇
天文学   42篇
综合类   2篇
自然地理   2篇
  2022年   3篇
  2021年   5篇
  2020年   5篇
  2019年   9篇
  2018年   6篇
  2017年   5篇
  2016年   4篇
  2015年   14篇
  2014年   10篇
  2013年   6篇
  2012年   14篇
  2011年   14篇
  2010年   12篇
  2009年   17篇
  2008年   10篇
  2007年   10篇
  2006年   9篇
  2005年   9篇
  2004年   7篇
  2003年   4篇
  2002年   4篇
  2001年   5篇
  2000年   2篇
  1999年   1篇
  1998年   3篇
  1997年   3篇
  1996年   3篇
  1992年   2篇
  1991年   2篇
  1990年   1篇
  1989年   1篇
  1987年   1篇
  1985年   1篇
  1983年   1篇
  1980年   1篇
  1963年   1篇
排序方式: 共有205条查询结果,搜索用时 0 毫秒
141.
142.
143.
DEMs derived from LIDAR data are nowadays largely used for quantitative analyses and modelling in geology and geomorphology. High-quality DEMs are required for the accurate morphometric and volumetric measurement of land features. We propose a rigorous automatic algorithm for correcting systematic errors in LIDAR data in order to assess sub-metric variations in surface morphology over wide areas, such as those associated with landslide, slump, and volcanic deposits. Our procedure does not require a priori knowledge of the surface, such as the presence of known ground control points. Systematic errors are detected on the basis of distortions in the areas of overlap among different strips. Discrepancies between overlapping strips are assessed at a number of chosen computational tie points. At each tie point a local surface is constructed for each strip containing the point. Displacements between different strips are then calculated at each tie point, and minimization of these discrepancies allows the identification of major systematic errors. These errors are identified as a function of the variables that describe the data acquisition system. Significant errors mainly caused by a non-constant misestimation of the roll angle are highlighted and corrected. Comparison of DEMs constructed using first uncorrected and then corrected LIDAR data from different Mt. Etna surveys shows a meaningful improvement in quality: most of the systematic errors are removed and the accuracy of morphometric and volumetric measurements of volcanic features increases. These corrections are particularly important for the following studies of Mt. Etna: calculation of lava flow volume; calculation of erosion and deposition volume of pyroclastic cones; mapping of areas newly covered by volcanic ash; and morphological evolution of a portion of an active lava field over a short time span.  相似文献   
144.
The potential environmental impacts on subsurface water resources induced by unconventional gas production are still under debate. Solving the controversy regarding the potential adverse effects of gas leakages on groundwater resources is therefore crucial. In this work, an interesting real-world case is presented in order to give further insight into methane multiphase and transport behavior in the shallow subsurface, often disregarded compared to the behavior in the deep subsurface. Multiphase flow and solute transport simulations were performed to assess the vulnerability of an existing shallow unconfined aquifer with respect to a hypothetical methane leakage resulting from a well integrity failure of a former deep geothermal well. The analysis showed that migration of gaseous methane through the aquifer under examination can be extremely fast (of the order of a few minutes), occurring predominantly vertically upwards, close to the well. By contrast, dissolved methane migration is largely affected by the groundwater flow field and occurs over larger time scales (of the order of months/years), covering a greater distance from the well. Overall, the real concern for this site in case of gas leakages is the risk of explosion in the close vicinity of the well. Predicted maximum gaseous fluxes (0.89 to 22.60 m3/d) are comparable to those reported for leaking wells, and maximum dissolved methane concentrations may overcome risk mitigation thresholds (7 to 10 mg/L) in a few years. Therefore, surface and subsurface monitoring before decommissioning is strongly advised to ensure the safety of the site.  相似文献   
145.
This paper examines the design of transfers from the Sun–Earth libration orbits, at the \(L_{1}\) and \(L_{2}\) points, towards the Moon using natural dynamics in order to assess the feasibility of future disposal or lifetime extension operations. With an eye to the probably small quantity of propellant left when its operational life has ended, the spacecraft leaves the libration point orbit on an unstable invariant manifold to bring itself closer to the Earth and Moon. The total trajectory is modeled in the coupled circular restricted three-body problem, and some preliminary study of the use of solar radiation pressure is also provided. The concept of survivability and event maps is introduced to obtain suitable conditions that can be targeted such that the spacecraft impacts, or is weakly captured by, the Moon. Weak capture at the Moon is studied by method of these maps. Some results for planar Lyapunov orbits at \(L_{1}\) and \(L_{2}\) are given, as well as some results for the operational orbit of SOHO.  相似文献   
146.
We describe the coordinate transformations that can be used to convert the velocity components measured by a set of sonic anemometers with time-dependent tilt fluctuations into a single, time-independent coordinate system. By applying the planar fit method (PFM) to each anemometer dataset, it is possible, for planar flows, to locate the flow plane at each measurement point and compare its orientation with the topography. Installation on a ship is also considered. An application of this method to intercomparison data has led to the detection of an instrument error due to a misalignment between the assembly of the sonic transducers and the anemometer pedestal. If this error occurs, pedestal levelling does not guarantee that measurements are unbiased. A correction method is proposed and the results of two experiments are shown. Flow planarity at different levels and flow distortion caused by the mast are highlighted. The influence of the error on the evaluation of the Reynolds stresses using PFM or the double rotation method and the triple rotation method is discussed and the tilt corrected stresses calculated using the three methods compared.  相似文献   
147.
This paper deals with the geometry and kinematics of the active normal faults in northern Umbria, and their relationship with the seismicity observed in the area. In particular, we illustrate the contribution of seismic reflection data (a network of seismic profiles, NNW–SSE and WSW–ENE trending) in constraining at depth the geometry of the different active fault systems and their reciprocal spatial relationships. The main normal fault in the area is the Alto Tiberina fault, NNW trending and ENE dipping, producing a displacement of about 5 km, and generating a continental basin (Val Tiberina basin), infilled by up to 1500 m with Upper Pliocene–Quaternary deposits. The fault has a staircase trajectory, and can be traced on the seismic profiles to a depth of about 13 km. A set of WSW-dipping, antithetic faults can be recognised on the profiles, the most important of which is the Gubbio fault, bordering an extensional Quaternary basin and interpreted as an active fault based on geological, geomorphologic and seismological evidence. The epicentral distribution of the main historical earthquakes is strictly parallel to the general trend of the normal faults. The focal mechanisms of the major earthquakes show a strong similarity with the attitude of the extensional faults, mapped at the surface and recognised on the seismic profiles. These observations demonstrate the connection between seismicity in the area and the activity of the normal faults. Moreover, the distribution of the instrumental seismicity suggests the activity of the Alto Tiberina fault as the basal detachment for the extensional tectonics of the area. Finally, the action of the Alto Tiberina fault was simulated using two dimensional finite element modelling: a close correspondence between the concentration of shear stresses in the model and the distribution of the present earthquakes was obtained.  相似文献   
148.
The seismic behavior of unreinforced masonry buildings is typically characterized by premature brittle collapse mechanisms that can cause serious consequences for the protection of human lives and for the preservation of historical and cultural heritage. Structural health monitoring can be a powerful tool enabling a quick post-earthquake assessment of the structure's performance, but its applications are still scarce as a consequence of the severe limitations affecting off-the-shelf sensing technologies, in terms of local nature of the measurements, costs, as well as long-term behavior, installation, and maintenance. To overcome some of these limitations, the authors have recently proposed a new sensing technology, called “smart brick,” that is a durable clay brick doped with stainless steel microfibers, working as a smart strain sensor for masonry buildings. This paper presents the first full-scale application of smart bricks, used for detecting and localizing progressive earthquake-induced damage in an unreinforced masonry building subjected to shaking table tests. Smart bricks are employed to detect changes in load paths on masonry walls, comparing strain measurements acquired after each step of the seismic sequence with those referring to the undamaged structure. Experimental results are interpreted using a 3D finite element model built to reproduce the shaking table tests. Overall, the results demonstrate that the smart bricks can effectively reveal local permanent changes in structural conditions following a progressive damage, therefore being apt for earthquake-induced damage detection and localization.  相似文献   
149.
Salt marshes are crucially important ecosystems at the boundary between the land and the sea, that are experiencing significant losses worldwide mainly dictated by the erosion of their margins. Improving our understanding of the mechanisms controlling marsh edge erosion is a key step to address conservation issues and salt-marsh response to changes in the environmental forcing. Here we have employed a complete, coupled Wind-Wave Tidal Model (WWTM) to analyse the temporal evolution of the wave field, and in particular of the mean wave-power density, in the Venice Lagoon over the past four centuries (from 1611 to 2012). We have then related wave-field changes to the observed erosion patterns determined by comparing recent aerial photographs (1978–2010) and historical bathymetric data. The results of our analyses from the Venice Lagoon show that, while wave-fields did not significantly change from 1611 to 1901, a rapid increase in wave-power densities occurred in the last century. This is suggested to depend on the positive feedback between relevant morphological evolutions and changes in the wave field, both influenced by natural forcing and anthropogenic pressures. We also emphasize the existence of a strong positive linear relationship between the volumetric marsh erosion rate and mean wave-power density. We thus suggest that relating salt-marsh lateral erosion rates to properly computed mean wave-power densities provides a valuable tool to address long-term tidal morphodynamics. © 2019 John Wiley & Sons, Ltd.  相似文献   
150.
A high-resolution spectrometer (0.0014 nm at 313 nm) has been developed at the University of L’Aquila (Italy) for atmospheric spectroscopic studies. The layout, optics and software for the instrument control are described. Measurements of the mercury low-pressure lamp lines from 200 to 600 nm show the high performances of the spectrometer. Laboratory measurements of OH and NO2 spectrums demonstrate that the system could be used for cross-section measurements and to detect these species in the atmosphere. The first atmospheric application of the system was the observation of direct solar and sky spectrums that shows a filling-in of the sky lines due to rotational Raman scattering. The measurements have been done with clear and cloudy sky and in both there was a strong dependence of the filling-in from the solar zenith angle whereas no dependence from the wavelengths was evident at low solar zenith angles (less than 85°).  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号