首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   75篇
  免费   2篇
  国内免费   1篇
测绘学   1篇
地球物理   21篇
地质学   26篇
海洋学   16篇
天文学   13篇
自然地理   1篇
  2022年   1篇
  2021年   1篇
  2020年   1篇
  2019年   1篇
  2017年   2篇
  2015年   1篇
  2014年   2篇
  2013年   2篇
  2012年   1篇
  2011年   3篇
  2010年   1篇
  2009年   3篇
  2008年   2篇
  2007年   3篇
  2006年   6篇
  2005年   1篇
  2004年   1篇
  2003年   6篇
  2002年   3篇
  2001年   1篇
  2000年   3篇
  1998年   4篇
  1997年   2篇
  1996年   2篇
  1994年   1篇
  1993年   1篇
  1992年   2篇
  1991年   3篇
  1989年   3篇
  1988年   2篇
  1987年   2篇
  1986年   1篇
  1985年   2篇
  1984年   2篇
  1983年   2篇
  1982年   1篇
  1979年   2篇
  1976年   1篇
排序方式: 共有78条查询结果,搜索用时 247 毫秒
61.
The Middle Miocene Tsushima granite pluton is composed of leucocratic granites, gray granites and numerous mafic microgranular enclaves (MME). The granites have a metaluminous to slightly peraluminous composition and belong to the calc‐alkaline series, as do many other coeval granites of southwestern Japan, all of which formed in relation to the opening of the Sea of Japan. The Tsushima granites are unique in that they occur in the back‐arc area of the innermost Inner Zone of Southwest Japan, contain numerous miarolitic cavities, and show shallow crystallization (2–6 km deep), based on hornblende geobarometry. The leucocratic granite has higher initial 87Sr/86Sr ratios (0.7065–0.7085) and lower εNd(t) (?7.70 to ?4.35) than the MME of basaltic–dacitic composition (0.7044–0.7061 and ?0.53 to ?5.24), whereas most gray granites have intermediate chemical and Sr–Nd isotopic compositions (0.7061–0.7072 and ?3.75 to ?6.17). Field, petrological, and geochemical data demonstrate that the Tsushima granites formed by the mingling and mixing of mafic and felsic magmas. The Sr–Nd–Pb isotope data strongly suggest that the mafic magma was derived from two mantle components with depleted mantle material and enriched mantle I (EMI) compositions, whereas the felsic magma formed by mixing of upper mantle magma of EMI composition with metabasic rocks in the overlying lower crust. Element data points deviating from the simple mixing line of the two magmas may indicate fractional crystallization of the felsic magma or chemical modification by hydrothermal fluid. The miarolitic cavities and enrichment of alkali elements in the MME suggest rapid cooling of the mingled magma accompanied by elemental transport by hydrothermal fluid. The inferred genesis of this magma–fluid system is as follows: (i) the mafic and felsic magmas were generated in the mantle and lower crust, respectively, by a large heat supply and pressure decrease under back‐arc conditions induced by mantle upwelling and crustal thinning; (ii) they mingled and crystallized rapidly at shallow depths in the upper crust without interaction during the ascent of the magmas from the middle to the upper crust, which (iii) led to fluid generation in the shallow crust. The upper mantle in southwest Japan thus has an EMI‐like composition, which plays an important role in the genesis of igneous rocks there.  相似文献   
62.
We examined the contributions of bedrock groundwater to the upscaling of storm‐runoff generation processes in weathered granitic headwater catchments by conducting detailed hydrochemical observations in five catchments that ranged from zero to second order. End‐member mixing analysis (EMMA) was performed to identify the geographical sources of stream water. Throughfall, hillslope groundwater, shallow bedrock groundwater, and deep bedrock groundwater were identified as end members. The contribution of each end member to storm runoff differed among the catchments because of the differing quantities of riparian groundwater, which was recharged by the bedrock groundwater prior to rainfall events. Among the five catchments, the contribution of throughfall was highest during both baseflow and storm flow in a zero‐order catchment with little contribution from the bedrock groundwater to the riparian reservoir. In zero‐order catchments with some contribution from bedrock groundwater, stream water was dominated by shallow bedrock groundwater during baseflow, but it was significantly influenced by hillslope groundwater during storms. In the first‐order catchment, stream water was dominated by shallow bedrock groundwater during storms as well as baseflow periods. In the second‐order catchment, deeper bedrock groundwater than that found in the zero‐order and first‐order catchments contributed to stream water in all periods, except during large storm events. These results suggest that bedrock groundwater influences the upscaling of storm‐runoff generation processes by affecting the linkages of geomorphic units such as hillslopes, riparian zones, and stream channels. Our results highlight the need for a three‐dimensional approach that considers bedrock groundwater flow when studying the upscaling of storm‐runoff generation processes. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   
63.
To evaluate water use and the supporting water source of a tropical rainforest, a 4‐year assessment of evapotranspiration (ET) was conducted in Pasoh Forest Reserve, a lowland dipterocarp forest in Peninsular Malaysia. The eddy covariance method and isotope signals of rain, plant, soil, and stream waters were used to determine forest water sources under different moisture conditions. Four sampling events were conducted to collect soil and plant twig samples in wet, moderate, dry, and very dry conditions for the identification of isotopic signals. Annual ET from 2012 to 2015 was quite stable with an average of 1,182 ± 26 mm, and a substantial daily ET was observed even during drought periods, although some decline was observed, corresponding with volumetric soil water content. During the wet period, water for ET was supplied from the surface soil layer between 0 and 0.5 m, whereas in the dry period, approximately 50% to 90% was supplied from the deeper soil layer below 0.5‐m depth, originating from water precipitated several months previously at this forest. Isotope signatures demonstrated that the water sources of the plants, soil, and stream were all different. Water in plants was often different from soil water, probably because plant water came from a different source than water that was strongly bound to the soil particles. Plants showed no preference for soil depth with their size, whereas the existence of storage water in the xylem was suggested. The evapotranspiration at this forest is balanced and maintained using most of the available water sources except for a proportion of rapid response run‐off.  相似文献   
64.
We evaluate the non-linear behaviour of soil sediments, analysing five weak and four strong motions observed at depths of 1 m and 28 m, in eastern Shizuoka prefecture, Japan. We identify S-wave velocities and frequency-dependent damping factors by minimizing the residual between observed and theoretical spectral ratios, based on a linear one-dimensional model. We find that S-wave velocities identified from strong motions, whose peak ground acceleration are 440, 210, 176, and 140 cm/s2, are significantly smaller than those identified from weak motions. The shear modulus reduction ratios estimated from identified S-wave velocities become clear above an effective shear strain of 10-4 and agree with laboratory test results below an effective shear strain of 8×10-4. The differences of damping factors between weak and strong motions are not clear below this effective shear strain, as the laboratory test suggested. The equivalent linear one-dimensional model, with frequency-dependent damping factors, is confirmed to be valid to simulate strong motions at least an effective shear strain of less than 4×10-4. © 1997 John Wiley & Sons, Ltd.  相似文献   
65.
To evaluate the influence of hydrological processes on dissolved organic carbon (DOC) dynamics in a forested headwater catchment, DOC concentration was observed along the flow path from rainfall to stream water via throughfall, soil water, groundwater, and spring water for 4 years, and DOC flux through the catchment was calculated. The spatial and temporal variations in DOC concentration and flux were compared with physical hydrological observations and the mean residence time of water. In the upslope soil layer, DOC concentrations were not significantly correlated with water fluxes, suggesting that DOC concentrations were not strictly controlled by water fluxes. In the upslope perennial groundwater, DOC concentration was affected by the change in the amount of microbial degradation of DOC produced by changes in the mean residence time of water. In stream water, the temporal variation in DOC concentration was usually affected by changes in DOC concentration of the inflow component via vertical infiltration from above the perennial groundwater. During dry periods, however, the component from inflow via vertical infiltration was negligible and DOC in the upslope perennial groundwater became the major component of stream water DOC. The temporal variation in stream water DOC concentration during baseflow was affected by rainfall patterns over several preceding months. Therefore, records of rainfall over several preceding months are one of the most important factors for predicting changes in DOC concentration on a catchment scale. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   
66.
Iye  M.  Ulrich  M. -H. 《Astrophysics and Space Science》1986,118(1-2):523-528
Preliminary results of spectroscopic studies of selected Seyfert galaxies employing a new Cassegrain echelle spectrograph completed at ESO are presented. Subjects reported are the asymmetric profiles of narrow emission lines, spatial variation of narrow emission line profiles, and the interstellar absorption lines.Paper presented at the IAU Third Asian-Pacific Regional Meeting, held in Kyoto, Japan, between 30 September–6 October, 1984.  相似文献   
67.
68.
We investigated the phase difference and the cross correlation coefficient between the band-pass filtered biennial variations of sea surface temperature (SST) and air-sea heat flux estimated by the monthly mean 2°×2° satellite data of Advanced Very High Resolution Radiometer (AVHRR) and Special Sensor Microwave/Imager (SSM/I) from July 1987 to June 1991. Judging from the phase difference, it can be determined whether the biennial variation of SST is controlled by local thermal air-sea interaction or oceanic processes of horizontal transport. When the local air-sea heat flux controls the biennial variation of SST, the phase of SST advances /2 (6 months) against that of the air-sea heat flux. In contrast, when the biennial variation of SST is controlled by the oceanic process, the phase difference between the SST and the air-sea heat flux becomes 0 or (12 months). In this case, two types of the phase differences are determined, depending on which variability of SST and air-sea heat flux is larger. The close thermal air-sea interaction is noticeable in the tropics and in the western boundary current region. The phase difference of /2 appears mainly in the north Pacific, the southeast Indian Ocean, and the western tropical Pacific; zero in the eastern tropical Pacific and the northeast and equatorial Atlantic; and that of in the central equatorial Pacific and north of the intertropical convergence zone (ITCZ) of the Atlantic. Phase differences of 0, , or /2 are possible in the western boundary current regions. This fact indicates that each current plays a different role to the biennial variation of SST. It is inferred that SST anomalies in the tropics are mutually correlated, and the process in which marked SST anomalies in the tropics are transferred to the remote area was probed. In the equatorial Pacific, the SST anomaly is transferred by the long planetary wave. On the other hand, it is found from the phase relationship and the horizontal correlation of SST that the SST anomaly in the central and western equatorial Pacific is connected through atmospheric mediation. It is suggested that the biennial variation of SST in the eastern Indian Ocean is affected by heat transport due to the Indonesian throughflow from the western tropical Pacific. It is found that the mentioned pattern of the interannual variation of SST in the tropical Atlantic as a dipole is not tenable.  相似文献   
69.
Abstract. Cathodoluminescence (CL) color, rare earth element (REE) content, sulfur and oxygen isotopes and fluid inclusions of anhydrite, which frequently filled in hydrothermal veins in the Kakkonda geothermal system, were investigated to elucidate the spatial, temporal and genetical evolution of fluids in the deep reservoir. The anhydrite samples studied are classified into four types based on CL colors and REE contents: type-N (no color), type-G (green color), type-T (tan color) and type-S (tan color with a high REE content). In the shallow reservoir, only type-N anhydrite is observed. In the deep reservoir, type-G anhydrite occurs in vertical veins whereas type-T and -N in lateral veins. Type-S anhydrite occurs in the heat-source Kakkonda Granite. The CL textures revealed that type-G anhydrite deposited earlier than type-T in the deep reservoir, implying that fracture system was changed from predominantly vertical to lateral.
Studies of fluid inclusions and δ34S and δ18O values of the samples indicate that type-N anhydrite deposited from diluted fluids derived from meteoric water, whereas type-G, -T and -S anhydrites deposited from magmatic brines derived from the Kakkonda Granite with the exception of some of type-G with recrystallization texture and no primary fluid inclusion, which deposited from fossil seawater preserved in the sedimentary rocks. Type-G, -T and -S anhydrites exhibit remarkably different chondrite-normalized REE patterns with a positive Eu anomaly, with a convex shape (peak at Sm or Eu) and with a negative Eu anomaly, respectively. The difference in the patterns might result from the different extent of hydrothermal alteration of the reservoir rocks and contribution of the magmatic fluids.  相似文献   
70.
Shirouma-Oike volcano, a Quaternary composite volcano in central Japan, consists mostly of calc-alkaline andesitic lavas and pyroclastic rocks. Products of the earlier stage of the volcano (older group) are augite-hypersthene andesite. Hornblende crystallized during the later stage of this older group, whereas biotite and quartz crystallized in the younger group.Assemblages of phenocrysts in disequilibrium, such as magnesian olivine(Fo30)/quartz, iron-rich hypersthene(En55)/iron-poor augite(Wo43.5, En42.5, Fs14.0), and two different types of zoning on the rim of clinopyroxene are found in a number of rocks. Detailed microprobe analyses of coexisting minerals reveal that phenocrysts belong to two distinctly different groups; one group includes magnesian olivine + augite which crystallized from a relatively high-temperature (above 1000°C) basaltic magma; the second group, which crystallized from relatively low temperature (about 800°C) dacitic to andesitic magma, includes hypersthene + hornblende + biotite + quartz + plagioclase + titanomagnetite ± ilmenite (in the younger group) and hypersthene + augite + plagioclase + titanomagnetite ± hornblende (in the older group). The temperature difference between the two magmas is clarified by Mg/Fe partition between clinopyroxene and olivine, and Fe-Ti oxides geothermometer. The compositional zoning of minerals, such as normal zoning of olivine and magnesian clinopyroxene, and reverse zoning of orthopyroxene, indicate that the basaltic and dacitic-andesitic magmas were probably mixed in a magma reservoir immediately before eruption. It is suggested that the basaltic magma was supplied intermittently from a deeper part to the shallower magma reservoir, in in which dacitic-andesitic magma had been fractionating.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号