首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   74篇
  免费   2篇
  国内免费   1篇
测绘学   1篇
地球物理   21篇
地质学   26篇
海洋学   16篇
天文学   12篇
自然地理   1篇
  2022年   1篇
  2021年   1篇
  2020年   1篇
  2019年   1篇
  2017年   2篇
  2015年   1篇
  2014年   2篇
  2013年   2篇
  2012年   1篇
  2011年   3篇
  2010年   1篇
  2009年   3篇
  2008年   2篇
  2007年   3篇
  2006年   6篇
  2005年   1篇
  2004年   1篇
  2003年   6篇
  2002年   3篇
  2001年   1篇
  2000年   3篇
  1998年   4篇
  1997年   2篇
  1996年   2篇
  1994年   1篇
  1993年   1篇
  1992年   2篇
  1991年   3篇
  1989年   3篇
  1988年   2篇
  1987年   2篇
  1985年   2篇
  1984年   2篇
  1983年   2篇
  1982年   1篇
  1979年   2篇
  1976年   1篇
排序方式: 共有77条查询结果,搜索用时 15 毫秒
71.
72.
The verification of a two-dimensional non-linear analysis based on a hybrid constitutive model, which consists of the Ramberg-Osgood model extended to two-dimensional problems and a dilatancy model, is discussed through a comparison of the shaking-table test results for a one-storey structure standing on a dry sandy deposit with those for the same on a saturated sandy deposit. Since the relationships G vs. γ and h vs. γ for shear strains of 10?5?10?3 can be obtained accurately by an inversion analysis of the resonance curve of the sandy deposit the proposed non-linear method can represent well the observed non-linear response of the dry or the saturated sandy deposit including the structure. This method, however, should be applied carefully to assess the response of a soil-structure system when the three-dimensional interaction affects significantly the response of the model. An equivalent linear analysis using a sway-rocking model is applied to simulate the non-linear ground motion including the three-dimensional interaction, and it is found that the sway-rocking model can also represent well the non-linear response of the system.  相似文献   
73.
Molecular dynamics (MD) simulations have been used to calculate the structures and bulk moduli of crystals in the system CaO-MgO-Al2O3-SiO2 (CMAS) using an interatomic potential model (CMAS94), which is composed of pairwise additive Coulomb, van der Waals, and repulsive interactions. The crystals studied, total of 27, include oxides, Mg meta- and ortho-silicates, Al garnets, and various Ca or Al bearing silicates, with the coordination number of cations ranging 6 to 12 for Ca, 4 to 12 for Mg, 4 to 6 for Al, and 4 and 6 for Si. In spite of the simplicity of the CMAS94 potential and the diversity of the structural types treated, MD simulations are quite satisfactory in reproducing well the observed structural data, including the crystal symmetries, lattice parameters, and average and individual nearest neighbour Ca-O, Mg-O, Al-O, and Si-O distances. In addition MD simulated bulk moduli of crystals in the CMAS system compare well with the observed values.  相似文献   
74.
Partitioning of oxygen and silicon between molten iron and (Mg,Fe)SiO3 perovskite was investigated by a combination of laser-heated diamond-anvil cell (LHDAC) and analytical transmission electron microscope (TEM) to 146 GPa and 3,500 K. The chemical compositions of co-existing quenched molten iron and perovskite were determined quantitatively with energy-dispersive X-ray spectrometry (EDS) and electron energy loss spectroscopy (EELS). The results demonstrate that the quenched liquid iron in contact with perovskite contained substantial amounts of oxygen and silicon at such high pressure and temperature (P–T). The chemical equilibrium between perovskite, ferropericlase, and molten iron at the P–T conditions of the core–mantle boundary (CMB) was calculated in Mg–Fe–Si–O system from these experimental results and previous data on partitioning of oxygen between molten iron and ferropericlase. We found that molten iron should include oxygen and silicon more than required to account for the core density deficit (<10%) when co-existing with both perovskite and ferropericlase at the CMB. This suggests that the very bottom of the mantle may consist of either one of perovskite or ferropericlase. Alternatively, it is also possible that the bulk outer core liquid is not in direct contact with the mantle. Seismological observations of a small P-wave velocity reduction in the topmost core suggest the presence of chemically-distinct buoyant liquid layer. Such layer physically separates the mantle from the bulk outer core liquid, hindering the chemical reaction between them.  相似文献   
75.
In order to validate wind vectors derived from the NASA Scatterometer (NSCAT), two NSCAT wind products of different spatial resolutions are compared with observations by buoys and research vessels in the seas around Japan. In general, the NSCAT winds agree well with the wind data from the buoys and vessels. It is shown that the root-mean-square (rms) difference between NSCAT-derived wind speeds and the buoy observations is 1.7 ms–1, which satisfies the mission requirement of accuracy, 2 ms–1. However, the rms difference of wind directions is slightly larger than the mission requirement, 20°. This result does not agree with those of previous studies on validation of the NSCAT-derived wind vectors using buoy observations, and is considered to be due to differences in the buoy observation systems. It is also shown that there are no significant systematic trends of the NSCAT wind speed and direction depending on the wind speed and incidence angle. Comparison with ship winds shows that the NSCAT wind speeds are lower than those observed by the research vessels by about 0.7 ms–1 and this bias is twice as large for data observed by moving ships than by stationary ships. This result suggests that the ship winds may be influenced by errors caused by ship's motion, such as pitching and rolling.  相似文献   
76.
Risk evaluation for earthquake-induced rapid and long-travel landslides in densely populated urban areas is currently the most important disaster mitigation task in landslide-threatened areas throughout the world. The research achievements of the IPL M-101 APERITIF project were applied to two urban areas in megacities of Japan. One site is in the upper slope of the Nikawa landslide site where previous movements were triggered by the 1995 Hyogoken-Nambu earthquake. During detailed investigation, the slope was found to be at risk from a rapid and long-travel landslide induced by sliding surface liquefaction by earthquakes similar in scale to the 1995 event. A new plan to prevent the occurrence of this phenomenon was proposed and the plan was implemented. Another area is the Tama residential area near Tokyo. A set of field and laboratory investigations including laser scanner, geological drilling and ring-shear tests showed that there was a risk of sliding surface liquefaction for both sites. A geotechnical computer simulation (Rapid/LS) using the quantitative data obtained in the study allowed urban landslide hazard zoning to be made at individual street level.  相似文献   
77.
The molar volumes and bulk moduli of CaSiO3 perovskite are calculated in the temperature range from 300 to 2,800 K and the pressure range from 0 to 143 GPa using molecular dynamics simulations that employ the breathing shell model for oxygen and the quantum correction in addition to the conventional pairwise interatomic potential models. The performance of five equations of state, i.e., the Keane, the generalized-Rydberg, the Holzapfel, the Stacey–Rydberg, and the third-order Birch–Murnaghan equations of state are examined using these data. The third-order Birch–Murnaghan equation of state is found to have a clear tendency to overestimate the bulk modulus at very high pressures. The Stacey–Rydberg equation of state degrades slightly at very high pressures along the low-temperature isotherms. In comparison, the Keane and the Holzapfel equations of state remain accurate in the whole temperature and pressure range considered in the present study. K 0′ derived from the Holzapfel equation of state also agrees best with that calculated independently from molecular dynamics simulations. The adiabatic bulk moduli of CaSiO3 perovskite along lower mantle geotherms are further calculated using the Keane and the Mie-Grüneisen–Debye equations of state. They are found to be constantly higher than those of the PREM by ~5%, and also very similar to those of the MgSiO3 perovskite. Our results support the view that CaSiO3 perovskite remains invisible in the Earth’s lower mantle.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号