首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   423篇
  免费   14篇
  国内免费   6篇
测绘学   2篇
大气科学   24篇
地球物理   94篇
地质学   135篇
海洋学   99篇
天文学   57篇
综合类   11篇
自然地理   21篇
  2024年   1篇
  2022年   3篇
  2021年   10篇
  2020年   16篇
  2019年   7篇
  2018年   8篇
  2017年   14篇
  2016年   6篇
  2015年   9篇
  2014年   17篇
  2013年   21篇
  2012年   16篇
  2011年   15篇
  2010年   12篇
  2009年   22篇
  2008年   25篇
  2007年   14篇
  2006年   23篇
  2005年   24篇
  2004年   11篇
  2003年   12篇
  2002年   13篇
  2001年   5篇
  2000年   15篇
  1999年   11篇
  1998年   8篇
  1997年   6篇
  1996年   2篇
  1995年   6篇
  1994年   5篇
  1993年   6篇
  1992年   3篇
  1991年   4篇
  1990年   3篇
  1988年   5篇
  1987年   4篇
  1986年   5篇
  1985年   8篇
  1984年   7篇
  1983年   9篇
  1982年   4篇
  1981年   4篇
  1980年   4篇
  1979年   4篇
  1978年   5篇
  1977年   3篇
  1976年   5篇
  1975年   1篇
  1974年   1篇
  1973年   1篇
排序方式: 共有443条查询结果,搜索用时 15 毫秒
361.
We investigated the seasonal march of the Intertropical Convergence Zone (ITCZ) shown by the 22 coupled general circulation models of the 20th Century Climate in Coupled Models experiment in seven regions (Africa, Indian Ocean, western Pacific, central Pacific, eastern Pacific, South America, and Atlantic Ocean). Inter-model differences in the seasonal march of the ITCZ over Africa (10?C40°E) were significantly smaller than those over other regions. This finding indicates that the seasonal march of the ITCZ over Africa is insensitive to differences in model physics and resolution and suggests that the seasonal march of the African ITCZ is controlled by robust and simple mechanisms. Motivated by this result, we tried to understand the process of the seasonal march of the ITCZ over central Africa (15?C30°E) based on an analysis of ERA-40 data. The analysis results revealed the following features of the ITCZ in this region: (1) The ITCZ itself produces large convective available potential energy that generates deep convection. (2) The abundant water vapor within the ITCZ is maintained by horizontal moisture flux. (3) Outside but near the ITCZ, shallow convection exists and may act to pre-moisten deep convection in spring and autumn. (4) The seasonal change of the ITCZ is preceded by that of the vertical moist instability in the lower free atmosphere caused by the seasonal change in insolation.  相似文献   
362.
Although we know that rainfall interception (the rain caught, stored, and evaporated from aboveground vegetative surfaces and ground litter) is affected by rain and throughfall drop size, what was unknown until now is the relative proportion of each throughfall type (free throughfall, splash throughfall, canopy drip) beneath coniferous and broadleaved trees. Based on a multinational data set of >120 million throughfall drops, we found that the type, number, and volume of throughfall drops are different between coniferous and broadleaved tree species, leaf states, and timing within rain events. Compared with leafed broadleaved trees, conifers had a lower percentage of canopy drip (51% vs. 69% with respect to total throughfall volume) and slightly smaller diameter splash throughfall and canopy drip. Canopy drip from leafless broadleaved trees consisted of fewer and smaller diameter drops (D50_DR, 50th cumulative drop volume percentile for canopy drip, of 2.24 mm) than leafed broadleaved trees (D50_DR of 4.32 mm). Canopy drip was much larger in diameter under woody drip points (D50_DR of 5.92 mm) than leafed broadleaved trees. Based on throughfall volume, the percentage of canopy drip was significantly different between conifers, leafed broadleaved trees, leafless broadleaved trees, and woody surface drip points (p ranged from <0.001 to 0.005). These findings are partly attributable to differences in canopy structure and plant surface characteristics between plant functional types and canopy state (leaf, leafless), among other factors. Hence, our results demonstrating the importance of drop‐size‐dependent partitioning between coniferous and broadleaved tree species could be useful to those requiring more detailed information on throughfall fluxes to the forest floor.  相似文献   
363.
The high-pressure and temperature equation of state of majorite solid solution, Mj0.8Py0.2, was determined up to 23 GPa and 773 K with energy-dispersive synchrotron X-ray diffraction at high pressure and high temperature using the single- and double-stage configurations of the multianvil apparatuses, MAX80 and 90. The X-ray diffraction data of the majorite sample were analyzed using the WPPD (whole-powder-pattern decomposition) method to obtain the lattice parameters. A least-squares fitting using the third-order Birch-Murnaghan equation of state yields the isothermal bulk modulus, K T0  = 156 GPa, its pressure derivative, K′ = 4.4(±0.3), and temperature derivative (∂K T /∂T) P = −1.9(±0.3)× 10−2 GPa/K, assuming that the thermal expansion coefficient is similar to that of pyrope-almandine solid solution. Received: 5 October 1998 / Revised, accepted: 24 June 1999  相似文献   
364.
In-situ IR measurements of OH species in quartz at high temperatures   总被引:1,自引:0,他引:1  
The nature of OH species in natural clear quartz was investigated by means of in-situ IR measurements over the temperature range –185 to 1000 °C. Reversible thermal behavior of OH species was examined for a sample pre-heated to 1000 °C for 1 hour. At room temperature, the IR spectrum of the quartz sample examined includes an intense absorption peak at 3379 cm–1 which has been assigned to an OH stretching vibration associated with Al substituting for Si (OH(Al)). The major spectral changes of the OH(Al) bond involve a systematic shift of its peak position and a decrease in its integral absorbance with temperature. A quasi-linear increase of the peak position from –185 to 400 °C is interpreted to be due to the change in the vibrational frequency of OH(Al) with hydrogen bond (H bond) distance. At higher temperatures, the IR frequency shows only a slight change, indicating a small influence of the H bond. On the other hand, the gradual decrease of the integral absorbance of OH(Al) with temperature indicates a decrease of this defect’s molar absorptivity without any reduction in defect concentration. This is interpreted to result from a decrease in dipole moment of OH(Al) with temperature. A sudden shift of the vibrational frequency from 3396 to 3386 cm–1 between 550 and 560 °C and a constant value of the integral absorbance from 535 to 570 °C were considered to be related to the change in H bond distance during the structural transformation of α-quartz to its β-form. The local environment of OH(Al) begins to change at temperatures below 570 °C, where the crystallographic α–β transition occurs. Received: 18 February 1998/ Accepted: 10 July 1998  相似文献   
365.
In this study, genes of two distinct tissue inhibitors of metalloproteinases-2 (TIMP-2) from Japanese puffer fish Fugu rubripes, Fugu TIMP-2a and TIMP-2b, were cloned. The open reading frames of Fugu TIMP-2a and TIMP-2b cDNAs are composed of 660 and 657 nucleotides and 220 and 219 amino acids, respectively. Both Fugu TIMP-2s contain 12 cysteine residues, which might form six disulfide bonds as in other animals' TIMP-2s. Reverse-transcribed polymerase chain reaction analysis showed the mRNAs of Fugu TIMP-2a and TIMP-2b to be expressed in some tissues examined with different expression patterns. These findings suggest that the two distinct Fugu TIMP-2s might perform different functions in Fugu tissues.  相似文献   
366.
367.
The non-marine Cretaceous-Paleogene boundary ( KPgB) in Jiayin of Heilongjiang was first defined and reported in China by the authors' research team in 2011 . Thereafter the continuous research on the KPgB and its related Late Cretaceous biota in Jiayin has been made by the authors in 2012-2020 . The achievements of the research are mainly reflected as follows:(1) a new drilling borehole with 60 m in depth carried out in the Xiaoheyan of Jiayin in 2016 , supplemented new palynological evidence for the KPgB definition in 2011;( 2 ) some radiometric dating newly made on the strata related to the KPgB in Jiayin and its neighboring Russian area, provided the supplemental evidence for the KPgB definition in Jiayin;( 3 ) many new fossils found by the au-thors, represented by the angiosperms Dalembia and Nelumbo, refresh understanding the Late Cretaceous envi-ronment of Jiayin;and (4) the TEM method is applied in the study of pollen exine ultrastructure of Pseudoin-tegricorpus, Wodehouseia, and Aquilapollenites, promoting the late Maastrichtian ecological study in Jiayin, re-lated to the KPgB.  相似文献   
368.
Coastal Oyashio Water (COW), defined as a water mass with a temperature lower than 2 °C and a salinity lower than 33.0, is distributed in the North Pacific Ocean off southeastern Hokkaido, Japan, from winter to spring. COW is rich in macronutrients and dissolved iron and is thus considered to affect the spring phytoplankton blooms in the Oyashio region. Although river water and sea-ice melt water have been considered freshwater end-members of COW, the contributions of these freshwater sources to COW have not been well described. In this study, the humic-like components in dissolved organic matter were first applied as a parameter to evaluate the freshwater end-members of COW in March 2015. Linear regressions with negative slopes were determined between the humic-like components and the salinity of COW. The intercepts of the regressions against the humic-like components were within the ranges of those observed for the local rivers of Hokkaido but were very different from those of sea ice. These findings suggest that river water contributed to the COW observed here as a freshwater end-member, although the contribution of sea-ice melt water to COW could not be evaluated. This novel approach also highlighted two different less-saline water masses in COW. The first was characterized by a lower temperature and relatively high levels of humic-like components, while the second was higher in temperature and had higher levels of humic-like components. It is suggested that these different characteristics are due to the contributions of water from different rivers and/or different effects of sea-ice melt water.  相似文献   
369.
There has been substantial development in computer codes for linear hydroelasticity in recent years, driven in part by the motivation to investigate the wave-induced response of very large floating structures (VLFSs). A recent International Ship and Offshore Structures Congress (ISSC) state-of-the-art report on VLFS design and analysis [ISSC, 2006. Report of Specialist Task Committee VI.2, very large floating structures. In: Frieze, P.A., Shenoi, R.A. (eds.), Proceedings of the 16th International Ship and Offshore Structures Congress, Elsevier, Southampton, UK, pp. 397-451] included a brief comparative study of the simulation results from different computer codes for a pontoon (mat-like) VLFS. The codes covered a mix of both fluid models (potential and linear Green-Naghdi) and structural models (3-D grillage, 2-D plate, 3-D shell). A more detailed comparison of the results from a select group of models from that study is provided and discussed herein. The similarities in the results increase the confidence level of the state-of-the-art in predicting the hydroelastic response of such structures, and the differences, including in computational efficiency, lead to an understanding of the significance of specific modeling assumptions and their impact on the predicted response.  相似文献   
370.
The effect of swell on the drag coefficient, C D, observed at the Hiratsuka Tower Station, presented by Suzuki et al. (1998, 2002), has been investigated. C D increases sharply with the windsea Reynolds number, R B, when there is a counter swell against the windsea direction, and only gradually when the swell comes from a mixture of directions. In cases where 2-D wave spectra were unavailable (1998, and others), swells showed a scattering effect compared with the pure windsea case on the C D-R B Diagram. R B is a useful parameter for investigating the effect of swells and further systematic accumulation of appropriate data is needed.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号