首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   189篇
  免费   8篇
  国内免费   2篇
测绘学   5篇
大气科学   28篇
地球物理   39篇
地质学   58篇
海洋学   31篇
天文学   36篇
自然地理   2篇
  2021年   1篇
  2019年   3篇
  2018年   1篇
  2017年   3篇
  2016年   3篇
  2015年   3篇
  2014年   11篇
  2013年   8篇
  2012年   6篇
  2011年   3篇
  2010年   13篇
  2009年   10篇
  2008年   4篇
  2007年   9篇
  2006年   11篇
  2005年   8篇
  2004年   5篇
  2003年   4篇
  2002年   3篇
  2001年   7篇
  2000年   3篇
  1999年   5篇
  1998年   3篇
  1997年   1篇
  1996年   2篇
  1995年   1篇
  1994年   2篇
  1993年   2篇
  1992年   2篇
  1991年   4篇
  1990年   1篇
  1989年   5篇
  1988年   4篇
  1987年   4篇
  1986年   7篇
  1985年   4篇
  1984年   4篇
  1983年   2篇
  1982年   4篇
  1981年   2篇
  1980年   1篇
  1979年   2篇
  1978年   3篇
  1977年   1篇
  1976年   2篇
  1975年   3篇
  1974年   3篇
  1972年   2篇
  1971年   1篇
  1970年   3篇
排序方式: 共有199条查询结果,搜索用时 250 毫秒
81.
Alkali granitoids (500-550 Ma) representing a prominent Pan-African magmatic event are widely distributed in the Sør Rondane Mountains, Dronning Maud Land, East Antarctica. Geochemically, they are granitic to syenitic in composition and show an alkaline affinity of A-type granites. They are characterized by high K2O+Na2O (7-13 wt%) and K2O/Na2O (1-2), low to intermediate Mg#, wide ranges of SiO2 (45-78 wt%), Sr (20-6500 ppm) and Ba (40-13000 ppm) and have Nb and Ti depletion in the primitive mantle normalized diagram. The granitoids are subdivided into Group I granites, Group II granites, Lunckeryggen Syenitic Complex and Mefjell Plutonic Complex. The Group I granites have higher Mg#, Sr/Ba, Sr/Y, (La/Yb)N and LREE/HREE, lower A/CNK, SREE and initial 87Sr/87Sr ratios and lack Eu anomalies compared to those with negative Eu anomalies in the Group II granites. The syenitic rocks from the Mefjell Plutonic Complex are higher in alkali, Ga, Zr, Ba, and have lower Mg#, Rb, Sr, Nb, Y, F and LREE/HREE with positive Eu anomaly, whereas the granites from the Mefjell Plutonic Complex have high LREE/HREE ratios with negative Eu anomaly. The Lunckeryggen syenitic rocks have intermediate Mg#, higher K2O, P2O5, TiO2, Fe2O3/FeO, Ba, Sr/Y and LREE/HREE ratios with lack of Eu anomalies and are lower in Al2O3, Ga, Y, Nb and Rb/Sr ratios. Based on chemical characteristics combined with isotopic data, we suggest that the Lunckeryggen syenitic body and Group I granitic bodies may be derived from the mantle-derived hot basic magma by fractional crystallization with minor assimilation. We also suggest that the Group II granites may be derived from assimilation with crustal rocks to varing degrees and then fractional crystallization in higher crustal levels (ACF model). The Mefjell Plutonic Complex seems to be derived from a heterogenetic magma source compared with other granitoids from the Sør Rondane Mountains. The syenitic rocks in the Mefjell Plutonic complex have a unique source (iron-enriched) and have a chemical affinity with the charnockites in Gjelsvikjella and western Mühlig-Hofmannfjella, but not like the Yamato syenites in adjacent areas.  相似文献   
82.
Basalt in the Furutobe District of the Kuroko mine area in Japan is characterized by abundant chlorite and epidote. Fluid inclusion studies indicate that chlorite is formed at lower temperatures (230–250°C) than epidote (250–280°C). The seawater/basalt mass ratio for the early chlorite-rich alteration was high (max. 40), but that for the later alteration was low (0.1–1.8). The CaO, Na2O and SiO2 of the bulk rock correlate negatively with MgO, while FeO and Σ Fe correlate positively with MgO. These changes in the characteristic features of hydrothermal alteration from early to late are generally similar to those for a mid-ocean ridge geothermal system accompanying basalt alteration.The MgO/FeO ratios of chlorite and actinolite and the Fe2O3 concentration of epidote from the basalt are greater than those of mid-ocean ridge basalt probably owing to the differences in the Fe2O3/FeO and MgO/FeO ratios of the parent rocks. The lower CaO concentration and the higher Na2O concentration of the bulk rock compared with altered mid-ocean ridge basalt can be interpreted in terms of the difference in original bulk rock compositions.The Furutobe basalt, as well as other submarine back arc basalts, contains more vesicles filled with hydrothermal minerals (epidote, calcite, quartz, chlorite, pyrite) than do the mid-ocean ridge basalts. The abundance of vesicles plays an important role in controlling the secondary mineralogy and geochemistry of hydrothermally altered submarine back arc basin basalts.  相似文献   
83.
The ultrahigh-temperature (UHT) metamorphism of the Napier Complex is characterized by the presence of dry mineral assemblages, the stability of which requires anhydrous conditions. Typically, the presence of the index mineral orthopyroxene in more than one lithology indicates that H2O activities were substantially low. In this study, we investigate a suite of UHT rocks comprising quartzo-feldspathic garnet gneiss, sapphirine granulite, garnet-orthopyroxene gneiss, and magnetite-quartz gneiss from Tonagh Island. High Al contents in orthopyroxene from sapphirine granulite, the presence of an equilibrium sapphirine-quartz assemblage, mesoperthite in quartzo-feldspathic garnet gneiss, and an inverted pigeonite-augite assemblage in magnetite-quartz gneiss indicate that the peak temperature conditions were higher than 1,000 °C. Petrology, mineral phase equilibria, and pressure-temperature computations presented in this study indicate that the Tonagh Island granulites experienced maximum P-T conditions of up to 9 kbar and 1,100 °C, which are comparable with previous P-T estimates for Tonagh and East Tonagh Islands. The textures and mineral reactions preserved by these UHT rocks are consistent with an isobaric cooling (IBC) history probably following an counterclockwise P-T path. We document the occurrence of very high-density CO2-rich fluid inclusions in the UHT rocks from Tonagh Island and characterize their nature, composition, and density from systematic petrographic and microthermometric studies. Our study shows the common presence of carbonic fluid inclusions entrapped within sapphirine, quartz, garnet and orthopyroxene. Analysed fluid inclusions in sapphirine, and some in garnet and quartz, were trapped during mineral growth at UHT conditions as 'primary' inclusions. The melting temperatures of fluids in most cases lie in the range of -56.3 to -57.2 °C, close to the triple point for pure CO2 (-56.6 °C). The only exceptions are fluid inclusions in magnetite-quartz gneiss, which show slight depression in their melting temperatures (-56.7 to -57.8 °C) suggesting traces of additional fluid species such as N2 in the dominantly CO2-rich fluid. Homogenization of pure CO2 inclusions in the quartzo-feldspathic garnet gneiss, sapphirine granulite, and garnet-orthopyroxene gneiss occurs into the liquid phase at temperatures in the range of -34.9 to +4.2 °C. This translates into very high CO2 densities in the range of 0.95-1.07 g/cm3. In the garnet-orthopyroxene gneiss, the composition and density of inclusions in the different minerals show systematic variation, with highest homogenization temperatures (lowest density) yielded by inclusions in garnet, as against inclusions with lowest homogenization (high density) in quartz. This could be a reflection of continued recrystallization of quartz with entrapment of late fluids along the IBC path. Very high-density CO2 inclusions in sapphirine associated with quartz in the Tonagh Island rocks provide potential evidence for the involvement of CO2-rich fluids during extreme crustal temperatures associated with UHT metamorphism. The estimated CO2 isochores for sapphirine granulite intersect the counterclockwise P-T trajectory of Tonagh Island rocks at around 6-9 kbar at 1,100 °C, which corresponds to the peak metamorphic conditions of this terrane derived from mineral phase equilibria, and the stability field of sapphirine + quartz. Therefore, we infer that CO2 was the dominant fluid species present during the peak metamorphism in Tonagh Island, and interpret that the fluid inclusions preserve traces of the synmetamorphic fluid from the UHT event. The stability of anhydrous minerals, such as orthopyroxene, in the study area might have been achieved by the lowering of H2O activity through the influx of CO2 at peak metamorphic conditions (>1,100 °C). Our microthermometric data support a counterclockwise P-T path for the Napier Complex.  相似文献   
84.
We report on the detection of VLBI fringes from quasars by a new VLBI system operating at 1 Gbps (1024 Mbits-per-second). Newly developed 1024 Msps (mega sample-per-second) AD samplers and 1024 Mbps recorders were used for the observations. A correlator with external buffers was used for the 1024 Mbps correlation processing of the tapes data.Our new VLBI system enabled 1024 Mbps VLBI, and this allowed the sampling of a 512 MHz bandwidth from a radio telescope receiver. This is the highest sampling speed ever used for VLBI, and the widest bandwidth used for VLBI observation. Initial sensitivity as evaluated by SNR comparison with earlier VLBI systems produced results to matched the expanded bandwidth. In our first observations, simultaneous optical fibre linked real-time VLBI observations were made to check the validity of data and precisely detemine the clock offsets among the radio telescopes.  相似文献   
85.
The possibility is investigated that a significant fraction of the X-ray background in the energy range 0.2–0.28 keV originates in the geocorona through bremsstrahlung. It is concluded that the geocoronal flux must be substantial at some times and the possibility exists that an observable geocoronal background exists at all times. The existing data on the soft X-ray background is found to be compatible with the hypothesis of a geocoronal component.  相似文献   
86.
Using the Am components in spectroscopic binaries, the region of metallicism in the (logm, logR) diagram is statistically discussed. The metallic-line characteristics appear in a slightly evolved stage near the Main Sequence within a belt characterized by logg=3.8–4.2, for which the radiiR/R =1.5–2.7. The distribution in the diagram indicates that appreciable differences should exist in the abundances as well as in the mixing lengths of the atmospheres of the Am components.Synchronism between rotation and revolution for the Am components is discussed, and it is clearly found that the synchronism holds accurately for the Am binaries with periods less than about six days, but for those with periods between six and ten days some Am components corotate and some do not, perhaps depending upon their ages.Using the Am spectroscopic binaries with periods less than twelve days, we find that the excess of metallicity is statistically correlated with the rotational velocity; and it is confirmed that the metallicity grossly decreases with increasing rotational velocity. If the effect of a non-Am secondary component is eliminated from a [m 1]-value for the combined light, the correlation between metallicity excess and rotational velocity for the Am components only should approach [m 1]/V (km s–1)=–0.00077.  相似文献   
87.
A model for diurnal variations of neutral and ionic nitrogen compounds in the thermosphere is reconstructed on the basis of a new photochemical aspect on N(2D), together with new observations of the NO density. The NO density so far measured must be reduced by a factor 2, due to a revision of the fluorescence coefficient for the NO γ-band airglow. Incorporating the quenching reaction of N(2D) with O in the model calculation results in a reduction of the NO density at heights as low as 100 km. These two effects are combined to lead to an evaluation that the N(2D) quantum yield for various possible reactions is as large as 0.9. A smaller rate coefficient for the quenching reaction than that measured in the laboratory, i.e. 1.0 × 10?12cm3sec?1 is favourable for the recent NO observation in the early morning, as well as the observed emission rates of the 5200 A airglow from N(2D) The present model predicts a significant day-to-night variation of N and NO densities at heights above 100 km. Below 100 km, the NO density is fairly stable because of its long chemical time constant. Since the rate coefficient for the conversion of N(4S) to NO is highly temperature dependent, the relative population of N(4S) and NO is very sensitive to the thermospheric temperature variation. Large variations of both N(4S) and NO densities due to the temperature change could occur especially at night. The model is in good agreement with the NO observations so far available in low and middle latitudes, as well as the N observation by the use of a rocket in the twilight.  相似文献   
88.
In order to quantitatively investigate the role of leads and sea-ice in air-mass modification, aircraft observations were conducted over the partially ice-covered Sea of Okhotsk. We investigated two cold-air outbreak events with different sea-ice concentrations. In both cases, the difference between the temperatures of surface air and the sea surface (ΔT) dropped rapidly with the accumulated fetch-width of leads up to about 35-40 km, and then decreased very slowly. The surface sensible heat flux originating from open water was about 300 W m−2 within a few kilometres from the coast and decreased with increasing accumulated fetch-width. The sensible heat flux was about 100 W m−2 on average. These results indicate that the downwind air-mass modification depends mainly on the total (accumulated) extent of open water. The total buoyancy flux calculated by the joint frequency distribution method correlated very well with ice concentration. Such a relationship was not clear in the case of the moisture flux . The ratio between rising thermals and cold downdrafts differed significantly between upwind and downwind regions; that is, the buoyancy flux was dominated by in the developing stage of the boundary layer, while also became important after the development of the boundary layer.  相似文献   
89.
The suspended matter in seawater near the bottom is distributed by the effects of sinking and diffusion. The author developed a method of estimation of the vertical eddy diffusivity near the sea bottom and the particle size distribution of bottom sediment, in the case of equilibrium state. This estimation was made by the comparison of measured and computed vertical distribution of beam attenuation. The parameters which were used for the computation were (1) median of the particle size distribution of bottom sediment, assuming that the particle size was a log-normal distribution, and (2) the proportional constant of vertical eddy diffusivity which was proportional to the height from the bottom.As the suspended matter in seawater contains particles of different sizes, the computation of the diffusion and beam attenuation was made for each particle size, and summarizing the results, the vertical distribution of beam attenuation coefficient was computed.In order to estimate the beam attenuation in high particle concentration, an equation by which the effect of overlapping of particle shadow in the light beam was eliminated, was used.  相似文献   
90.
Mesoscale eddies, particularly anticyclonic ones, are dominant features in the Kuril Basin of the Okhotsk Sea. In 1999, both surface drifter and hydrographic observations caught the same anticyclonic eddy northwest of Bussol’ Strait, which has a diameter of ∼100 km, typical surface velocity of 0.2–0.3 m s−1, and less dense core extending to a depth of ∼1200 m. Based on an idea that the generation of mesoscale eddies is caused by strong tidal mixing in and around Kuril Straits, we have conducted a series of three-dimensional numerical model experiments, in which strong tidal mixing is simply parameterized by increasing coefficients of vertical eddy viscosity and diffusivity along the eastern boundary. Initially, a regular series of disturbances with a wavelength of ∼70 km starts to develop. The disturbances can be clearly explained by a linear instability theory and regarded as the baroclinic instability associated with the near-surface front formed in the region between the enhanced mixing and offshore regions. In the mature phase, the disturbances grow large enough that some eddies pinch off and advect offshore (westward), with the scale of disturbances increasing gradually. Typical eddy scale and its westward propagation speed are ∼100 km and ∼0.6 km day−1, respectively, which are consistent with the observations by satellites. The westward propagation can be explained partly due to nonlinear effect of self-offshore advection and partly due to the β-effect. With the inclusion of the upper ocean restoring, the dominance of anticyclonic eddy, extending from surface to a depth of ∼1200 m, can be reproduced.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号