首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   102篇
  免费   5篇
  国内免费   20篇
测绘学   1篇
大气科学   4篇
地球物理   26篇
地质学   82篇
海洋学   11篇
天文学   2篇
自然地理   1篇
  2021年   1篇
  2020年   2篇
  2019年   2篇
  2018年   7篇
  2017年   7篇
  2016年   1篇
  2015年   4篇
  2013年   3篇
  2012年   2篇
  2011年   1篇
  2010年   4篇
  2009年   16篇
  2008年   10篇
  2007年   11篇
  2006年   2篇
  2005年   2篇
  2004年   7篇
  2003年   8篇
  2002年   3篇
  2001年   5篇
  2000年   6篇
  1999年   1篇
  1998年   3篇
  1997年   4篇
  1996年   4篇
  1995年   1篇
  1994年   1篇
  1993年   1篇
  1989年   1篇
  1987年   2篇
  1984年   1篇
  1982年   1篇
  1978年   2篇
  1970年   1篇
排序方式: 共有127条查询结果,搜索用时 62 毫秒
101.
The seismometer network of the Japanese expressway system was enhanced following the 1995 Kobe earthquake. Based on earthquake information from the instruments of the seismometer network, a traffic control is performed directly after the event because of the potential for damage to expressway structures. Expressways serve as vital trunk lines of transportation and are important for the restoration of damage-stricken areas. Therefore, earthquake-induced damage to expressway structures should be estimated as soon as possible. Expressway embankments were seriously damaged during recent earthquakes, such as the 2004 Niigata Chuetsu earthquake. The present study constructs the fragility curves of expressway embankments in Japan in order to estimate the damage distribution immediately after an earthquake. Damage datasets for expressways are compiled for the 2003 Northern-Miyagi earthquake, the 2003 Tokachi-oki earthquake, the 2004 Niigata Chuetsu earthquake, and the 2007 Niigata Chuetsu-oki earthquake. The spatial distributions of the peak ground velocity (PGV) are estimated for these four earthquakes in order to evaluate the relationship between the damage ratio of expressway embankments and the PGV. Statistical analysis is then conducted in order to draw the fragility curves for expressway embankments. Based on the fragility curves, major damage that disrupts ordinary expressway traffic may occur when the peak ground velocity exceeds approximately 35.0 cm/s. The fragility curves constructed in the present study are helpful for predicting the damage distribution on expressways soon after an earthquake, which enables efficient traffic control and rapid disaster response.  相似文献   
102.
Recent results of high-resolution seismic tomography and mineral physics experiments are used to study mantle dynamics of Western Pacific and East Asia. The most important processes in subduction zones are the shallow and deep slab dehydration and the convective circulation (corner flow) processes in the mantle wedge. The combination of the two processes may have caused the back-arc spreading in the Lau basin, affected the morphology of the subducting Philippine Sea slab and its seismicity under southwest Japan, and contributed to the formation of the continental rift system and intraplate volcanism in Northeast Asia, which are clearly visible in our tomographic images. Slow anomalies are also found in the mantle under the subducting Pacific slab, which may represent (a) small mantle plumes, (b) upwellings associated with the slab collapsing down to the lower mantle, or (c) sub-slab dehydration associated with deep earthquakes caused by the reactivation of large faults preserved in the slab. Combining tomographic images and earthquake hypocenters with phase diagrams in the systems of peridotite + water, we proposed a petrologic model for arc volcanism. Arc magmas are caused by the dehydration reactions of hydrated slab peridotite that supply water-rich fluids to the mantle wedge and cause partial melting of the convecting mantle wedge. A large amount of fluids can be released from hydrated MORB at depths shallower than 55 km, which move upwards to hydrate the wedge corner under the fore-arc, and never drag down to the deeper mantle along the slab surface. Slab dehydration reactions at 120 km depth are the antigorite-related 5 reactions which supply water-rich fluids for forming the volcanic front. Phase A and Mg-surssasite breakdown reactions at 200 and 300 km depths below 700 °C cause the second and third arcs, respectively. Moreover, the dehydration reactions of super-hydrous phase B, phases D and E at 500–660 km depths cause the fluid transportation to the mantle boundary layer (MBL) (410–660 km depth). The stagnant slabs extend from Japan to Beijing, China for over 1000 km long, indicating that the arc–trench system covers the entire region from the Japan trench to East Asia. We propose a big mantle wedge (BMW) model herein, where hydrous plumes originating from 410 km depth cause a series of intra-continental hot regions. Fluids derived from MBL accumulated by the double-sided subduction zones, rather than the India–Asia collision and the subsequent indentation into Asia, are the major cause for the active tectonics and mantle dynamics in this broad region.  相似文献   
103.
Using a recently developed petrogenetic grid for MORB + H2O, we propose a new model for the transportation of water from the subducting slab into the mantle transition zone. Depending on the geothermal gradient, two contrasting water-transportation mechanisms operate at depth in a subduction zone. If the geothermal gradient is low, lawsonite carries H2O into mantle depths of 300 km; with further subduction down to the mantle transition depth (approximately 400 km) lawsonite is no longer stable and thereafter H2O is once migrated upward to the mantle wedge then again carried down to the transition zone due to the induced convection. At this depth, hydrous β-phase olivine is stable and plays a role as a huge water reservoir. In contrast, if the geothermal gradient is high, the subducted slab may melt at 700–900 °C at depths shallower than 80 km to form felsic melt, into which water is dissolved. In this case, H2O cannot be transported into the mantle below 80 km. Between these two end-member mechanisms, two intermediate types are present. In the high-pressure intermediate type, the hydrous phase A plays an important role to carry water into the mantle transition zone. Water liberated by the lawsonite-consuming continuous reaction moves upward to form hydrous phase A in the hanging wall, which transports water into deeper mantle. This is due to a unique character of the reaction, because Phase A can become stable through the hydration reaction of olivine. In the case of low-pressure intermediate type, the presence of a dry mantle wedge below 100 km acts as a barrier to prevent H2O from entering into deeper mantle.  相似文献   
104.
The Neoproterozoic Earth was shaped largely by the Grenvillian and Pan-African orogenies. Out of these, the Grenvillian orogeny has long been regarded to be of minor nature in terms of global-scale orogenic episodes, whereas the Pan-African orogeny has been widely recognized in many continental fragments, although not in major parts of Asia. Based on chronological information in zircons from major river mouths across several important terrains of the globe, we show here that the Grenvillian orogeny contributed significantly to the formation of the continental crust. The time period between 0.6 Ga and 0.8 Ga marked the climax at the dawn of the Pan-African orogeny. Continental crust formed in this period is concentrated in the Pan-African orogenic belts widely across the globe. These regions were widespread over the half hemisphere of the globe, and were subsequently reduced in size after they moved to form Laurasia. The normalized frequency distribution of zircon ages from river-mouth sand over the world clearly demonstrates that Neoproterozoic and (0.9–0.6 Ga) and Grenvillian (1.3–1.0 Ga) peaks define the largest population. This means that extensive subduction, and hence active plate tectonics, might have operated through these periods. The zircon study has also brought to light new regions of the Grenvillian orogenic belts, particularly in the continents which are now covered by thick Phanerozoic sedimentary basins. Based on the new locations of Grenvillian orogens identified in this study, and using the distribution patterns as a marker bed, we propose revised paleogeographic configurations of the Rodinia and Gondwana supercontinents.Our results demonstrate that the Neoproterozoic was the most active period of crust formation in the Earth. The cold basins, formed right after the assembly of Rodinia, exhibit a basin chain fringing the northern periphery of Rodinia, which turned into sites of mantle upwellings and led to the rifting and separation of the supercontinental assembly. The continents then moved northwards after the formation of Gondwana at ca. 540 Ma, and enlarged the northern half of the supercontinent Pangea since 250 Ma.Based on the results, we also evaluate the role of supercontinents in the mechanism of generation of superplumes addressing the enigma that the coldest mantle right above the Core–Mantle Boundary turns to the hottest one over a period of several hundreds of million years. Slab graveyard formed by the Pan-African subduction can be imaged through P-wave tomography. We postulate that the high-velocity anomaly in the D” layer underneath Gondwana has now transformed to the low-V regions to generate the African superplume. The tectonic history of solid Earth in the Phanerozoic seems to be controlled by the slab graveyards formed by the Grenvillian orogeny ca. 1.0 Ga.  相似文献   
105.
Lost primordial continents   总被引:7,自引:2,他引:5  
We investigate the bulk density variations of some representative compositions for the lower mantle based on the pressure–volume–temperature equation of state of the constituent mineral phases. The density variations of pyrolite, harzburgite, mid-ocean ridge basalt (MORB), tonalite–trondhjemite–granodiorite (TTG), and anorthosite are studied at a temperature of 300 K and at lower mantle pressures. The density of MORB is greater than that of pyrolite throughout the lower mantle, while the density of harzburgite is slightly lower than that of pyrolite. The density of anorthosite is comparable to that of pyrolite in the lower mantle in general, and greater in the lowermost mantle, while the density of TTG is lower than pyrolite throughout the lower mantle. The above results have important implications for the fate of primordial continents, TTG and anorthosite crust. While subducted TTG might be stagnant in the mantle transition zone, dense subducted anorthositic crust could be expected to sink to the core–mantle boundary (CMB) and thus might be a major component of the D" layer immediately above the CMB. Thus, we propose that significant bodies of continental material could be present in the mantle in the transition zone and immediately above the CMB, in addition to the continents on the Earth's surface.  相似文献   
106.
Seafloor hydrothermal alteration at an Archaean mid-ocean ridge   总被引:2,自引:0,他引:2  
A hydrothermally metamorphosed/altered greenstone complex capped by bedded cherts exposed in the North Pole, Pilbara Carton, Western Australia, is interpreted as an accretionary complex. It is distinctive in being characterised by both duplex structure and an oceanic crust stratigraphy. This complex is shown to represent an Archaean upper oceanic crust with a mid‐ocean ridge hydrothermal metamorphism that increases in grade stratigraphically downward. Three mineral zones have been defined; Zone A of the zeolite facies, the prehnite‐pumpellyite facies or the lower‐greenschist facies at high‐XCO2 condition, Zone B of the greenschist facies, and Zone C of the greenschist/amphibolite transition facies. In Zone A metabasites, Ca‐Al silicates including Ca‐zeolites, prehnite and pumpellyite are absent and epidote/clinozoisite is extremely rare. Instead, abundant carbonates are present with chlorite suggesting high‐XCO2 composition in the fluid. On the other hand, in Zones B and C metabasites, where Ca‐amphibole + epidote/clinozoisite + chlorite + Ca‐Na plagioclase are the dominant assemblages, carbonate is not identified. The metamorphic conditions boundary of Zones B/C were estimated to be about 350 °C at a pressure of <0.5 kbar. Fluid compositions coexisting with Archaean greenstones at the transition between Zones B and C were estimated by thermodynamic calculation in the CaFMASCH system (T = 350–370 °C, P = 150–1000 bar) at XCO2 of 0.012–0.140, such values are higher than present‐day vent fluids collected near mid‐ocean ridges with low‐XCO2 values, up to 0.005. The Archaean seawater depth at the mid‐ocean ridge was estimated to be 1600 m at XCO2 = 0.06 using a depth‐to‐boiling point curve for a fluid. The carbonation due to high‐XCO2 hydrothermal fluids occurred near the ridge‐axis before or was coincident with ridge metamorphism.  相似文献   
107.
Numerical models on thermal structure, convective flow of solid, generation and transportation of H2O-rich fluid in subduction zones are consolidated to have a comprehensive view of the subduction zone processes: heat balance, circulation of H2O magmatism–metamorphism, growth of arcs and continental margins. A large scale convection model with steady subduction of a cold old slab (130 Myr old) predicts rapid ( 100 Myr) cooling of subduction zones, resulting in cessation of magmatism. The model also predicts that the mantle temperature beneath arcs and continental margins is greatly affected by the effective temperature of the subducting slab, i.e., the age of the subducting slab. If subduction of a young hot slab, including ridge subduction, occurs every 60 to 120 Myr as is suggested for eastern Asia, the average temperature beneath arcs is increased by about 300 °C, which may explain the long-lasting magmatism in eastern Asia. Associated with subduction of young slabs and ridges, thermal structure and circulation of H2O are greatly modified to cause a transition from (1) normal arc magmatism, (2) forearc mantle melting, to (3) slab melting to produce a significant amount (100 km3) of granitic melts, associated with both high-P/T and low-P/T type metamorphism. The last stage of (3) can result in formation of a granitic batholith belt and a paired metamorphic belts. Synthesis of the numerical models and observations suggest that episodic subduction of young slabs and ridges can explain heat source for generating a large amount of granitic magmas of batholiths, synchronous formation of batholith and regional metamorphic belts, and PT conditions of the paired metamorphism. Even the high-P/T metamorphism requires an elevated geothermal structure in the forearc region, associated with ridge subduction. Although the emplacement of the batholiths and the regional metamorphic belts, and the mass balance in subduction zones are not well constrained at present, the episodic event associated with ridge subduction is thought to be essential for net growth of arcs and continental margins, as well as for the long-term heat balance in subduction zones.  相似文献   
108.
Horizontal wind fields over Funka Bay during cold air outbreaks were simulated using a 3-D meso-scale atmospheric model. The simulated wind fields over the bay have a positive curl in the north and a negative curl in the south. These wind fields were used to simulate the current in Funka Bay using a barotropic ocean model. The simulated current pattern was composed of two vortices—one with anti-clockwise vorticity in the north and the other with clockwise vorticity in the south—and was in the opposite direction to that simulated by the uniform wind fields. This is because the wind stress curl effect on the vorticity production in Funka Bay opposes and overwhelms the bathymetry torque effect during cold air outbreaks. These results show that the non-uniformity of the wind fields caused by the land topography around a shallow lake or bay cannot be neglected in simulating its currents.  相似文献   
109.
We investigate the inclinations of heliospheric current sheet at two sites in interplanetary space, which are generated from the same solar source. From the data of solar wind magnetic fields observed at Venus (0.72 AU) and Earth (1 AU) during December 1978–May 1982 including the solar maximum of 1981, 54 pairs of candidate sector boundary crossings are picked out, of which 16 pairs are identified as sector boundaries. Of the remainder, 12 pairs are transient structures both at Venus and Earth, and 14 pairs are sector boundaries at one site and have transient structures at the other site. It implies that transient structures were often ejected from the coronal streamer belt around the solar maximum. For the 16 pairs of selected sector boundaries, we determine their normals by using minimum variance analysis. It is found that most of the normal azimuthal angles are distributed between the radial direction and the direction perpendicular to the spiral direction both at Venus and Earth. The normal elevations tend to be smaller than ≈45° with respect to the solar equatorial plane, indicating high inclinations of the heliospheric current sheet, in particular at Earth. The larger scatter in the azimuth and elevation of normals at Venus than at Earth suggests stronger effects of the small-scale structures on the current sheet at 0.72 AU than at 1 AU. When the longitude difference between Venus and Earth is small (<40° longitudinally), similar or the same inclinations are generally observed, especially for the sector boundaries without small-scale structures. This implies that the heliospheric current sheet inclination tends to be maintained during propagation of the solar wind from 0.72 AU to 1 AU. Detailed case studies reveal that the dynamic nature of helmet streamers causes variations of the sector boundary structure.  相似文献   
110.
The Kurosegawa zone in southwest Japan is a 600 km long serpentinite mélange in the Chichibu terrains. It runs generally E-W but is slightly oblique to the subparallel arrangement of the Ryoke, Sanbagawa and Chichibu belts of Southwest Japan. A variety of geological units occurs in the Kurosegawa zone:
1. (1) granodiorite, gneiss and amphibolite of ca. 400 Ma,
2. (2) Siluro-Devonian formations,
3. (3) Upper Carboniferous to Jurassic formations,
4. (4) Upper Jurassic to Lower Cretaceous formations,
5. (5) serpentinite and
6. (6) low- to medium-grade metamorphic rocks of various baric types (ages, 220, 320, 360 and 420 Ma by K-Ar).
The most widespread is a high-pressure intermediate group of metamorphic rocks. Serpentinite is emplaced along the faults between and within the constituent units.Rocks of the Kurosegawa zone represent a mature orogenic belt along a continental margin or an island arc. Its original site as constrained by paleomagnetism was near the equatorial area. Here, 400 Ma old paired metamorphism and related magmatism took place. The island arc or microcontinent migrated northward to collide with the Eurasia plate during Late Jurassic, thus consuming the intervening ocean.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号