首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   534篇
  免费   23篇
  国内免费   2篇
测绘学   36篇
大气科学   45篇
地球物理   156篇
地质学   161篇
海洋学   31篇
天文学   87篇
综合类   3篇
自然地理   40篇
  2023年   3篇
  2022年   7篇
  2021年   18篇
  2020年   9篇
  2019年   14篇
  2018年   26篇
  2017年   23篇
  2016年   22篇
  2015年   26篇
  2014年   25篇
  2013年   32篇
  2012年   20篇
  2011年   26篇
  2010年   22篇
  2009年   31篇
  2008年   25篇
  2007年   27篇
  2006年   32篇
  2005年   17篇
  2004年   18篇
  2003年   8篇
  2002年   19篇
  2001年   11篇
  2000年   5篇
  1999年   6篇
  1998年   3篇
  1996年   3篇
  1995年   2篇
  1994年   4篇
  1993年   2篇
  1986年   3篇
  1984年   3篇
  1983年   2篇
  1982年   3篇
  1981年   4篇
  1980年   5篇
  1979年   3篇
  1978年   4篇
  1976年   4篇
  1975年   4篇
  1974年   2篇
  1971年   4篇
  1967年   3篇
  1966年   2篇
  1965年   2篇
  1963年   3篇
  1962年   3篇
  1959年   2篇
  1958年   2篇
  1957年   2篇
排序方式: 共有559条查询结果,搜索用时 15 毫秒
71.
Large wood tends to be deposited in specific geomorphic units within rivers. Nevertheless, predicting the spatial distribution of wood deposits once wood enters a river is still difficult because of the inherent complexity of its dynamics. In addition, the lack of long‐term observations or monitored sites has usually resulted in a rather incomplete understanding of the main factors controlling wood deposition under natural conditions. In this study, the deposition of large wood was investigated in the Czarny Dunajec River, Polish Carpathians, by linking numerical modelling and field observations so as to identify the main factors influencing wood retention in rivers. Results show that wood retention capacity is higher in unmanaged multi‐thread channels than in channelized, single‐thread reaches. We also identify preferential sites for wood deposition based on the probability of deposition under different flood scenarios, and observe different deposition patterns depending on the geomorphic configuration of the study reach. In addition, results indicate that wood is not always deposited in the geomorphic units with the highest roughness, except for low‐magnitude floods. We conclude that wood deposition is controlled by flood magnitude and the elevation of flooded surfaces in relation to the low‐flow water surface. In that sense, the elevation at which wood is deposited in rivers will differ between floods of different magnitude. Therefore, together with the morphology, flood magnitude represents the most significant control on wood deposition in mountain rivers wider than the height of riparian trees. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
72.
Black marls form very extensive outcrops in the Alps and constitute some of the most eroded terrains, thus causing major problems of sedimentation in artificial storage systems (e.g. reservoirs) and river systems. In the experimental catchments near Draix (France), soil erosion rates have been measured in the past at the plot scale through a detailed monitoring of surface elevation changes and at the catchment scale through continuous monitoring of sediment yield in traps at basin outlets. More recently, erosion rates have been determined by means of dendrogeomorphic techniques in three monitored catchments of the Draix basin. A total of 48 exposed roots of Scots pine have been sampled and anatomical variations in annual growth rings resulting from denudation analysed. At the plot scale, average medium‐term soil erosion rates derived from exposed roots vary between 1·8 and 13·8 mm yr?1 (average: 5·9 mm yr?1) and values are significantly correlated with slope angle. The dendrogeomorphic record of point‐scale soil erosion rates matches very well with soil erosion rates measured in the Draix basins. Based on the point‐scale measurements and dendrogeomorphic results obtained at the point scale, a linear regression model involving slope angle was derived and coupled to high‐resolution slope maps obtained from a LiDAR‐generated digital elevation model so as to generate high‐resolution soil erosion maps. The resulting regression model is statistically significant and average soil erosion rates obtained from the areal erosion map (5·8, 5·2 and 6·2 mm yr?1 for the Roubine, Moulin and Laval catchments, respectively) prove to be well in concert with average annual erosion rates measured in traps at the outlet of these catchments since 1985 (6·3, 4·1 and 6·4 mm yr?1). This contribution demonstrates that dendrogeomorphic analyses of roots clearly have significant potential and that they are a powerful tool for the quantification and mapping of soil erosion rates in areas where measurements of past erosion is lacking. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   
73.
The purpose of GPS-satellite-to-satellite tracking (GPS-SST) is to determine the gravitational potential at the earth's surface from measured ranges (geometrical distances) between a low-flying satellite and the high-flying satellites of the Global Positioning System (GPS). In this paper, GPS-satellite-to-satellite tracking is reformulated as the problem of determining the gravitational potential of the earth from given gradients at satellite altitude. The uniqueness and stability of the solution are investigated. The essential tool is to split the gradient field into a normal part (i.e. the first-order radial derivative) and a tangential part (i.e. the surface gradient). Uniqueness is proved for polar, circular orbits corresponding to both types of data (first radial derivative and/or surface gradient). In both cases gravity recovery based on satellite-to-satellite tracking turns out to be an exponentially ill-posed problem. Regularization in terms of spherical wavelets is proposed as an appropriate solution method, based on the knowledge of the singular system. Finally, the extension of this method is generalized to a nonspherical earth and a non-spherical orbital surface, based on combined terrestrial and satellite data.  相似文献   
74.
ABSTRACT

We thank Allen and Berghuijs for continuing the discussion on field hydrology and data sharing and discuss two incentives to promote data collection and sharing in hydrological sciences: a collaborative attitude and additional funding to make data publicly available.  相似文献   
75.
ABSTRACT

Groundwater level fluctuations are caused by spatial and temporal superposition of processes within and outside the aquifer system. Most of the subsurface processes are usually observed on a small scale. Upscaling to the regional scale, as required for future climate change scenarios, is difficult due to data scarcity and increasing complexity. In contrast to the limited availability of system characteristics, high-resolution data records of groundwater hydrographs are more generally available. Exploiting the information contained in these records should thus be a priority for analysis of the chronical lack of data describing groundwater system characteristics. This study analyses the applicability of 63 indices derived from daily hydrographs to quantify different dynamics of groundwater levels in unconfined gravel aquifers from three groundwater regions (Bavaria, Germany). Based on the results of two different skill tests, the study aids index selection for different dynamic components of groundwater hydrographs.  相似文献   
76.
High mountainous areas are geomorphologically active environments which are strongly shaped by redistribution of sediments and soils. With the projected climate warming in the twenty-first century and the continued retreat of glaciers, the area of newly exposed, highly erodible sediments and soils will increase. This presents a need to better understand and quantify erosion processes in young mountainous soils, as an increase in erodibility could threaten human infrastructure (i.e. hydroelectric power, tourist installations and settlements). While soil development is increasingly well understood and quantified, a coupling to soil erosion rates is still missing. The aim of this study was, therefore, to assess how soil erosion rates change with surface age. We investigated two moraine chronosequences in the Swiss Alps: one in the siliceous periglacial area of Steingletscher (Sustenpass), with soils ranging from 30 a to 10 ka, and the other in the calcareous periglacial area of Griessgletscher (Klausenpass) with surfaces ranging from age of 110 a to 13.5 ka. We quantified the erosion rates using the 239+240Pu fallout radionuclides and compared them to physical and chemical soil properties and the vegetation coverage. We found no significant differences between the two parent materials. At both chronosequences, the erosion rates were highest in the young soils (on average 5−10 t ha-1 a-1 soil loss). Erosion rates decreased markedly after 3−5 ka of soil development (on average 1−2.5 t ha-1 a-1 soil loss) to reach a more or less stable situation after 10−14 ka (on average 0.3–2 t ha-1 a-1). Climate change not only causes glacier retreat, but also increased sediment dynamics. Depending on the relief and vegetational development, it takes up to at least 10 ka to reach soil stability. The establishment of a closed vegetation cover with dense root networks seems to be the controlling factor in the reduction of soil erodibility. © 2020 John Wiley & Sons, Ltd.  相似文献   
77.
Previous work has shown that streamflow response during baseflow conditions is a function of storage, but also that this functional relationship varies among seasons and catchments. Traditionally, hydrological models incorporate conceptual groundwater models consisting of linear or non‐linear storage–outflow functions. Identification of the right model structure and model parameterization however is challenging. The aim of this paper is to systematically test different model structures in a set of catchments where different aquifer types govern baseflow generation processes. Nine different two‐parameter conceptual groundwater models are applied with multi‐objective calibration to transform two different groundwater recharge series derived from a soil‐atmosphere‐vegetation transfer model into baseflow separated from streamflow data. The relative performance differences of the model structures allow to systematically improve the understanding of baseflow generation processes and to identify most appropriate model structures for different aquifer types. We found more versatile and more aquifer‐specific optimal model structures and elucidate the role of interflow, flow paths, recharge regimes and partially contributing storages. Aquifer‐specific recommendations of storage models were found for fractured and karstic aquifers, whereas large storage capacities blur the identification of superior model structures for complex and porous aquifers. A model performance matrix is presented, which highlights the joint effects of different recharge inputs, calibration criteria, model structures and aquifer types. The matrix is a guidance to improve groundwater model structures towards their representation of the dominant baseflow generation processes of specific aquifer types. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   
78.
79.
Groundwater transit time is an essential hydrologic metric for groundwater resources management. However, especially in tropical environments, studies on the transit time distribution (TTD) of groundwater infiltration and its corresponding mean transit time (mTT) have been extremely limited due to data sparsity. In this study, we primarily use stable isotopes to examine the TTDs and their mTTs of both vertical and horizontal infiltration at a riverbank infiltration area in the Vietnamese Mekong Delta (VMD), representative of the tropical climate in Asian monsoon regions. Precipitation, river water, groundwater, and local ponding surface water were sampled for 3 to 9 years and analysed for stable isotopes (δ18O and δ2H), providing a unique data set of stable isotope records for a tropical region. We quantified the contribution that the two sources contributed to the local shallow groundwater by a novel concept of two‐component lumped parameter models (LPMs) that are solved using δ18O records. The study illustrates that two‐component LPMs, in conjunction with hydrological and isotopic measurements, are able to identify subsurface flow conditions and water mixing at riverbank infiltration systems. However, the predictive skill and the reliability of the models decrease for locations farther from the river, where recharge by precipitation dominates, and a low‐permeable aquitard layer above the highly permeable aquifer is present. This specific setting impairs the identifiability of model parameters. For river infiltration, short mTTs (<40 weeks) were determined for sites closer to the river (<200 m), whereas for the precipitation infiltration, the mTTs were longer (>80 weeks) and independent of the distance to the river. The results not only enhance the understanding of the groundwater recharge dynamics in the VMD but also suggest that the highly complex mechanisms of surface–groundwater interaction can be conceptualized by exploiting two‐component LPMs in general. The model concept could thus be a powerful tool for better understanding both the hydrological functioning of mixing processes and the movement of different water components in riverbank infiltration systems.  相似文献   
80.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号