首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1002篇
  免费   58篇
  国内免费   8篇
测绘学   20篇
大气科学   87篇
地球物理   226篇
地质学   397篇
海洋学   93篇
天文学   175篇
综合类   4篇
自然地理   66篇
  2023年   5篇
  2022年   6篇
  2021年   18篇
  2020年   24篇
  2019年   17篇
  2018年   33篇
  2017年   30篇
  2016年   43篇
  2015年   33篇
  2014年   47篇
  2013年   62篇
  2012年   53篇
  2011年   63篇
  2010年   45篇
  2009年   66篇
  2008年   55篇
  2007年   55篇
  2006年   51篇
  2005年   42篇
  2004年   24篇
  2003年   34篇
  2002年   37篇
  2001年   27篇
  2000年   21篇
  1999年   19篇
  1998年   15篇
  1997年   12篇
  1996年   10篇
  1995年   10篇
  1994年   6篇
  1993年   10篇
  1991年   5篇
  1990年   6篇
  1989年   7篇
  1988年   7篇
  1987年   6篇
  1986年   6篇
  1985年   4篇
  1984年   4篇
  1983年   4篇
  1982年   4篇
  1980年   4篇
  1979年   4篇
  1978年   3篇
  1977年   4篇
  1976年   2篇
  1975年   2篇
  1974年   2篇
  1973年   4篇
  1972年   4篇
排序方式: 共有1068条查询结果,搜索用时 661 毫秒
931.
A complex and highly dynamical ocean region, the Agulhas Current System plays an important role in the transfer of energy, nutrients and organic material from the Indian to the Atlantic Ocean. Its dynamics are not only important locally, but affect the global ocean-atmosphere system. In working towards improved ocean reanalysis and forecasting capabilities, it is important that numerical models simulate mesoscale variability accurately—especially given the scarcity of coherent observational platforms in the region. Data assimilation makes use of scarce observations, a dynamical model and their respective error statistics to estimate a new, improved model state that minimises the distance to the observations whilst preserving dynamical consistency. Qualitatively, it is unclear whether this minimisation directly translates to an improved representation of mesoscale dynamics. In this study, the impact of assimilating along-track sea-level anomaly (SLA) data into a regional Hybrid Coordinate Ocean Model (HYCOM) is investigated with regard to the simulation of mesoscale eddy characteristics. We use an eddy-tracking algorithm and compare the derived eddy characteristics of an assimilated (ASSIM) and an unassimilated (FREE) simulation experiment in HYCOM with gridded satellite altimetry-derived SLA data. Using an eddy tracking algorithm, we are able to quantitatively evaluate whether assimilation updates the model state estimate such that simulated mesoscale eddy characteristics are improved. Additionally, the analysis revealed limitations in the dynamical model and the data assimilation scheme, as well as artefacts introduced from the eddy tracking scheme. With some exceptions, ASSIM yields improvements over FREE in eddy density distribution and dynamics. Notably, it was found that FREE significantly underestimates the number of eddies south of Madagascar compared to gridded altimetry, with only slight improvements introduced through assimilation, highlighting the models’ limitation in sustaining mesoscale activity in this region. Interestingly, it was found that the threshold for the maximum eddy propagation velocity in the eddy detection scheme is often exceeded when data assimilation relocates an eddy, causing the algorithm to interpret the discontinuity as eddy genesis, which directly influences the eddy count, lifetime and propagation velocity, and indirectly influences other metrics such as non-linearity. Finally, the analysis allowed us to separate eddy kinetic energy into contributions from detected mesoscale eddies and meandering currents, revealing that the assimilation of SLA has a greater impact on mesoscale eddies than on meandering currents.  相似文献   
932.
933.
The partitioning of rain water into throughfall, stemflow and interception loss when passing through plant canopies depends on properties of the respective plant species, such as leaf area and branch angles. In heterogeneous vegetation, such as tropical forest or polycultural systems, the presence of different plant species may consequently result in a mosaic of situations with respect to quantity and quality of water inputs into the soil. As these processes influence not only the water availability for the plants, but also water infiltration and nutrient leaching, the understanding of plant effects on the repartitioning of rain water may help in the optimization of land use systems and management practices. We measured throughfall and stemflow in a perennial polyculture (multi‐strata agroforestry), monocultures of peach palm (Bactris gasipaes) for fruit and for palmito, a monoculture of cupuaçu (Theobroma grandiflorum), spontaneous fallow and primary forest during one year in central Amazonia, Brazil. The effect on rain water partitioning was measured separately for four useful tree species in the polyculture and for two tree species in the primary forest. Throughfall at two stem distances, and stemflow, differed significantly between tree species, resulting in pronounced spatial patterns of water input into the soil in the polyculture system. For two tree species, peach palm for fruit (Bactris gasipaes) and Brazil nut trees (Bertholletia excelsa), the water input into the soil near the stem was significantly higher than the open‐area rainfall. This could lead to increased nutrient leaching when fertilizer is applied close to the stem of these trees. In the primary forest, such spatial patterns could also be detected, with significantly higher water input near a palm (Oenocarpus bacaba) than near a dicotyledonous tree species (Eschweilera sp.). Interception losses were 6·4% in the polyculture, 13·9 and 12·3% in the peach palm monocultures for fruit and for palmito, respectively, 0·5% in the cupuaçu monoculture and 3·1% in the fallow. With more than 20% of the open‐area rainfall, the highest stemflow contributions to the water input into the soil were measured in the palm monocultures and in the fallow. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   
934.
935.
Inspired by the recent results of the Dawn mission, thermodynamic models of rock alteration and brine evaporation have been used to help understand the conditions under which water–rock interaction took place within the dwarf planet Ceres. This analysis constrains Ceres's early history and offers a framework within which future observations may be interpreted. A broad range of alteration conditions have been simulated using the Geochemist's Workbench and PHREEQC software, associated with the FREZCHEM model that constrains the consequences of freezing the liquid phase in equilibrium with the observed mineralogical assemblage. Comparison of the modeling results with observed surface mineralogy at Ceres indicates advanced alteration under a relatively high fugacity of hydrogen, a conclusion that is consistent with predictions for, and observations of, large ice‐rich bodies. The simulations suggest production of methane that could help regulate the redox environment and possibly form clathrate hydrates upon freezing of the early ocean. The detection of localized occurrences of natrite (sodium carbonate) at the surface of Ceres provides key constraints on the composition of fluids that are necessarily alkaline. In addition, the combined hydrothermal and freezing simulations suggest that hydrohalite may be abundant in Ceres's subsurface, similar to Earth's polar regions. The global homogeneity of Ceres's surface, made of material formed at depth, suggests a large‐scale formation mechanism, while local heterogeneities associated with impact craters and landslides suggest that some form of sodium carbonate and other salts are accessible in the shallow subsurface.  相似文献   
936.
The leatherjacket Meuschenia scaber is widely distributed in Australasian waters, and is a valued bycatch of inshore bottom trawl fisheries although little is known of its life history. Here, we describe the reproductive biology of the species based on 651 leatherjackets sampled in the Hauraki Gulf, New Zealand, between July 2014 and March 2016. The maximum total length (LT) recorded for females and males were 320 and 315?mm, respectively, with both sexes present in all size classes. Monthly analysis of gonad condition revealed a clear spawning season from late austral winter to early summer (August–December), and histological analysis of the ovaries revealed that M. scaber is an indeterminate serial spawning gonochorist. The estimated sizes at sexual maturity (L50) for females (189.9?mm LT) and males (188.4?mm LT) did not differ significantly. Relatively small testes, sexual dimorphism and underwater observation of nesting suggest that M. scaber is a paired spawner.  相似文献   
937.
Drainage networks link erosional landscapes and sedimentary basins in a source‐to‐sink system, controlling the spatial and temporal distribution of sediment flux at the outlets. Variations of accumulation rates in a sedimentary basin have been classically interpreted as changes in erosion rates driven by tectonics and/or climate. We studied the interactions between deformation, rainfall rate and the intrinsic dynamics of drainage basins in an experimental fold‐and‐thrust belt subjected to erosion and sedimentation under constant rainfall and shortening rates. The emergence of thrust sheets at the front of a prism may divert antecedent transverse channels (perpendicular to the structural grain) leading to the formation of longitudinal reaches, later uplifted and incorporated in the prism by the ongoing deformation. In the experiments, transverse incisions appear in the external slopes of the emerging thrust sheets. Headward erosion in these transverse channels results in divide migration and capture of the uplifted longitudinal channels located in the inner parts of the prism, leading to drainage network reorganization and modification of the sediment routing system. We show that the rate of drainage reorganization increases with the rainfall rate. It also increases in a nonlinear way with the rate of uplift. We explain this behaviour by an exponent > 1 on the slope variable in the framework of the stream power erosion model. Our results confirm the view that early longitudinal‐dominated networks are progressively replaced by transverse‐dominated rivers during mountain building. We show that drainage network dynamics modulate the distribution of sedimentary fluxes at the outlets of experimental wedges. We propose that under constant shortening and rainfall rates the drainage network reorganization can also modulate the composition and the spatial distribution of clastic fluxes in foreland basins.  相似文献   
938.
Compared to oxygen isotopes, the carbon isotope composition of biogenic carbonates is less commonly used as proxy for palaeoenvironmental reconstructions because shell δ13C is derived from both dissolved inorganic (seawater) and organic carbon sources (food), and interactions between these two pools make it difficult to unambiguously identify any independent effect of either. The main purpose of this study was to demonstrate any direct impact of variable food supply on bivalve shell δ13C signatures, using low/high rations of a 13C-light mixed algal diet fed to 14-month-old (adult) cultured Japanese Crassostrea gigas under otherwise essentially identical in vitro conditions during 3 summer months (May, June and July 2003, seawater temperature means at 16, 18 and 20 °C respectively) in experimental tanks at the Argenton laboratory along the Brittany Atlantic coast of France. At a daily ration of 12% (versus 4%) oyster dry weight, the newly grown part of the shells (hinge region) showed significantly lower δ13C values, by 3.5‰ (high ration: mean of −5.8  ± 1.1‰, n = 10; low ration: mean of −2.3  ± 0.7‰, n = 6; ANOVA Scheffe’s test, p < 0.0001). This can be explained by an enhanced metabolic activity at higher food supply, raising 13C-depleted respiratory CO2 in the extrapallial cavity. Based on these δ13C values and data extracted from the literature, and assuming no carbon isotope fractionation between food and shell, the proportion of shell metabolic carbon would be 26  ± 7 and 5  ± 5% for the high- and low-ration C. gigas shells respectively; with carbon isotope fractionation (arguably more realistic), the corresponding values would be 69  ± 14 and 24  ± 9%. Both groups of cultured shells exhibited lower δ13C values than did wild oysters from Marennes-Ol éron Bay in the study region, which is not inconsistent with an independent influence of diet type. Although there was no significant difference between the two food regimes in terms of δ18O shell values (means of 0.1  ± 0.3 and 0.4  ± 0.2‰ at high and low rations respectively, non-significant Scheffe’s test), a positive δ13C vs. δ18O relationship recorded at high rations supports the interpretation of a progressive temperature-mediated rise in metabolic activity fuelled by higher food supply (in this case reflecting increased energy investment in reproduction), in terms not only of δ13C (metabolic signal) but also of δ18O (seawater temperature signal). Overall, whole-shell δ18O trends faithfully recorded summer/winter variations in seawater temperature experienced by the 17-month-old cultured oysters.  相似文献   
939.
High-resolution sonar surveys, and a detailed subsurface model constructed from 3D seismic and well data allowed investigation of the relationship between the subsurface geology and gas-phase (methane) seepage for the Coal Oil Point (COP) seep field, one of the world’s largest and best-studied marine oil and gas seep fields, located over a producing hydrocarbon reservoir near Santa Barbara, California. In general, the relationship between terrestrial gas seepage, migration pathways, and hydrocarbon reservoirs has been difficult to assess, in part because the detection and mapping of gas seepage is problematic. For marine seepage, sonar surveys are an effective tool for mapping seep gas bubbles, and thus spatial distributions. Seepage in the COP seep field occurs in an east–west-trending zone about 3–4 km offshore, and in another zone about 1–2 km from shore. The farthest offshore seeps are mostly located near the crest of a major fold, and also along the trend of major faults. Significantly, because faults observed to cut the fold do not account for all the observed seepage, seepage must occur through fracture and joint systems that are difficult to detect, including intersecting faults and fault damage zones. Inshore seeps are concentrated within the hanging wall of a major reverse fault. The subsurface model lacks the resolution to identify specific structural sources in that area. Although to first order the spatial distribution of seeps generally is related to the major structures, other factors must also control their distribution. The region is known to be critically stressed, which would enhance hydraulic conductivity of favorably oriented faults, joints, and bedding planes. We propose that this process explains much of the remaining spatial distribution.  相似文献   
940.
Several Wave Energy Converters (abbreviated as WECs) have intensively been studied and developed during the last decade and currently small farms of WECs are getting installed. WECs in a farm are partly absorbing, partly redistributing the incident wave power. Consequently, the power absorption of each individual WEC in a farm is affected by its neighbouring WECs. The knowledge of the wave climate around the WEC is needed to predict its performance in the farm. In this paper a technique is developed to implement a single and multiple WECs based on the overtopping principle in a time-dependent mild-slope equation model. So far, the mild-slope equations have been widely used to study wave transformations around coastal and offshore structures, such as breakwaters, piles of windmills and offshore platforms. First the limitations of the WEC implementation are discussed through a sensitivity analysis. Next the developed approach is applied to study the wave height reduction behind a single WEC and a farm. The wake behind an isolated WEC is investigated for uni- and multidirectional waves; it is observed that an increase of the directional spread leads to a faster wave redistribution behind the WEC. Further the wake in the lee of multiple WECs is calculated for two different farm lay-outs, i.e. an aligned grid and a staggered grid, by adapting the performance of each WEC to its incident wave power. The evolved technique is a fast tool to find the optimal lay-out of WECs in a farm and to study the possible influence on surrounding activities in the sea.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号