首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1337篇
  免费   42篇
  国内免费   20篇
测绘学   39篇
大气科学   139篇
地球物理   293篇
地质学   489篇
海洋学   110篇
天文学   218篇
综合类   7篇
自然地理   104篇
  2022年   7篇
  2021年   22篇
  2020年   26篇
  2019年   15篇
  2018年   35篇
  2017年   39篇
  2016年   51篇
  2015年   36篇
  2014年   50篇
  2013年   77篇
  2012年   63篇
  2011年   75篇
  2010年   55篇
  2009年   80篇
  2008年   64篇
  2007年   67篇
  2006年   69篇
  2005年   62篇
  2004年   35篇
  2003年   51篇
  2002年   48篇
  2001年   39篇
  2000年   24篇
  1999年   24篇
  1998年   19篇
  1997年   13篇
  1996年   14篇
  1995年   14篇
  1994年   12篇
  1993年   15篇
  1991年   10篇
  1990年   6篇
  1989年   10篇
  1988年   8篇
  1987年   10篇
  1986年   7篇
  1985年   9篇
  1984年   11篇
  1983年   9篇
  1982年   7篇
  1981年   7篇
  1980年   10篇
  1979年   7篇
  1978年   6篇
  1977年   7篇
  1976年   6篇
  1975年   14篇
  1973年   7篇
  1968年   5篇
  1967年   7篇
排序方式: 共有1399条查询结果,搜索用时 20 毫秒
41.
42.
Air flow was observed above and within canopies of a number of kinds of soybeans. The Clark cultivar and two isolines of the Harosoy cultivar were studied in 1979 and 1980, respectively. Wind speed above the canopy was measured with cup anemometers. Heated thermistor anemometers were used to measure air flow within the canopy. Above-canopy air flow was characterized in terms of the zero-plane displacement (d), roughness parameter (z o) and drag coefficient (C d). d and z o were dependent on canopy height but were independent of friction velocity in the range 0.55 to 0.75 m s?1 · C d for the various canopies ranged from 0.027 to 0.035. Greater C d values were measured over an erectophile canopy than over a planophile canopy. C d was not measurably affected by differences in leaf pubescence. Within-canopy wind profiles were measured at two locations: within and between rows. The wind profile was characterized by a region of great wind shear in the upper canopy and by a region of relatively weak wind shear in the middle canopy. Considerable spatial variability in wind speed was evident, however. This result has significant implications for canopy flow modeling efforts aimed at evaluating transport in the canopy. In the lower canopy, wind speed within a row increased with depth whereas wind speed between two rows decreased with depth. The wind speeds at the two locations tended to converge to a common value at a height near 0.10 m. The attenuation of within-canopy air flow was stronger in canopies with greater foliage density. Canopy flow attenuation seemed to decrease with increasing wind speed, suggesting that high winds distorted the shape of the canopy in such a manner that the penetration of wind into the canopy increased.  相似文献   
43.
44.
We examine the dynamics of turbulence subgrid (or sub-filter) scales over a lake surface and the implications for large-eddy simulations (LES) of the atmospheric boundary layer. The analysis is based on measurements obtained during the Lake-Atmosphere Turbulent EXchange (LATEX) field campaign (August–October, 2006) over Lake Geneva, Switzerland. Wind velocity, temperature and humidity profiles were measured at 20 Hz using a vertical array of four sonic anemometers and open-path gas analyzers. The results indicate that the observed subgrid-scale statistics are very similar to those observed over land surfaces, suggesting that the effect of the lake waves on surface-layer turbulence during LATEX is small. The measurements allowed, for the first time, the study of subgrid-scale turbulent transport of water vapour, which is found to be well correlated with the transport of heat, suggesting that the subgrid-scale modelling of the two scalars may be coupled to save computational resources during LES.  相似文献   
45.
46.
During a haze event in Baltimore, U.S.A. from July 6 to 8, 2002, smoke from forest fires in the Québec region (Canada), degraded air quality and impacted upon local climate, decreasing solar radiation and air temperature. The smoke particles in and above the atmospheric boundary layer (ABL) served as a tracer and provided a unique opportunity to investigate the ABL structure, especially entrainment. Elastic backscatter lidar measurements taken during the haze event distinctly reveal the downward sweeps (or wisps) of smoke-laden air from the free atmosphere into the ABL. Visualisations of mechanisms such as dry convection, the entrainment process, detrainment, coherent entrainment structures, and mixing inside the ABL, are presented. Thermals overshooting at the ABL top are shown to create disturbances in the form of gravity waves in the free atmosphere aloft, as evidenced by a corresponding ripple structure at the bottom of the smoke layer. Lidar data, aerosol ground-based measurements and supporting meteorological data are used to link free atmosphere, mixed-layer and ground-level aerosols. During the peak period of the haze event (July 7, 2002), the correlation between time series of elastic backscatter lidar data within the mixed layer and the scattering coefficient from a nephelometer at ground level was found to be high (R=0.96 for z =324 m, and R=0.89 for z=504 m). Ground-level aerosol concentration was at a maximum about 2 h after the smoke layer intersected with the growing ABL, confirming that the wisps do not initially reach the ground.  相似文献   
47.
48.
The fair and effective governance of freshwater is an increasingly prominent issue in New Zealand. Emerging from a complex of cultural, economic and biophysical narratives, freshwater geographies are multiple, varied and increasingly acknowledged as worthy of interdisciplinary scrutiny. In this commentary, we reflect on a series of generative spaces that we – as group of postgraduate geographers (plus supporting staff) – created to engage with the multiplicity of freshwater meanings both within and beyond the academy. Through this evolving epistemic‐political project, we significantly reframed our own understandings about what freshwater ‘is’ and how it ought to be governed. By pursuing a deeper understanding of how the world gets made, we expand our ability to know and make it differently.  相似文献   
49.
Soils from two catenas on north-and south-facing slopes of a kame were analyzed to determine the effect of lithology, topography, and microclimate on profile development. In loess on the north-facing slope, where microclimate favored CaCO3 dissolution and clay translocation, pedogenesis was rapid and an A-E-Bt-C profile developed. In contrast, an A-Bt-C profile developed on the south-facing slope. In gravel where limestone/dolostone dissolution was slow, A-C profiles were found and CaCO3 was depleted to a ≤ 25-cm depth, 20± cm less than reported for similar Michigan soils. Slopewash and runoff are inferred to have caused silt accumulations and greater infiltration at the base of ≥ 20° slopes, resulting in a thicker solum in foot-and toe-slope positions, whereas on slopes of ≤ 7° infiltration and interflow are the dominant processes, resulting in a thicker solum on the transportational midslope. The differences in soil profile development are attributed to sediment facies changes at 25- to 50-cm depth and resulting groundwater movement. [Key words: soil development, soil spatial variability, kame slope catena, Wisconsin.]  相似文献   
50.
High-elevation mountains often constitute for basins important groundwater recharge sources through mountain-front recharge processes. These processes include streamflow losses and subsurface inflow from the mountain block. However, another key recharge process is from irrigation practices, where mountain streamflow is distributed across the irrigated piedmont. In this study, coupled groundwater fluctuation measurements and environmental tracers (18O, 2H, and major ions) were used to identify and compare the natural mountain-front recharge to the anthropogenically induced irrigation recharge. Within the High Atlas mountain front of the Ourika Basin, Central Morocco, the groundwater fluctuation mapping from the dry to wet season showed that recharge beneath the irrigated area was higher than the recharge along the streambed. Irrigation practices in the region divert more than 65% of the stream water, thereby reducing the potential for in-stream groundwater recharge. In addition, the irrigation areas close to the mountain front had greater water table increases (up to 3.5 m) compared with the downstream irrigation areas (<1 m increase). Upstream crops have priority to irrigation with stream water over downstream areas. The latter are only irrigated via stream water during large flood events and are otherwise supplemented by groundwater resources. These changes in water resources used for irrigation practices between upstream and downstream areas are reflected in the spatiotemporal evolution of the stable isotopes of groundwater. In the upstream irrigation area, the groundwater stable isotope values (δ18O: −8.4‰ to −7.4‰) reflect recharge by the diverted stream water. In the downstream irrigation area, the groundwater isotope values are lower (δ18O: −8.1‰ to −8.4‰) due to recharge via the flood water. In the nonirrigation area, the groundwater has the highest stable isotope values (δ18O: −6.8‰ to −4.8‰). This might be due to recharge via subsurface inflow from the mountain block to the mountain front and/or recharge via local low altitude rainfall. These findings highlight that irrigation practices can result in the dominant mountain-front recharge process for groundwater.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号