首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   572篇
  免费   32篇
  国内免费   8篇
测绘学   25篇
大气科学   34篇
地球物理   170篇
地质学   214篇
海洋学   55篇
天文学   77篇
综合类   3篇
自然地理   34篇
  2023年   4篇
  2022年   10篇
  2021年   12篇
  2020年   17篇
  2019年   14篇
  2018年   30篇
  2017年   22篇
  2016年   34篇
  2015年   19篇
  2014年   21篇
  2013年   44篇
  2012年   36篇
  2011年   47篇
  2010年   35篇
  2009年   38篇
  2008年   16篇
  2007年   24篇
  2006年   24篇
  2005年   25篇
  2004年   14篇
  2003年   11篇
  2002年   20篇
  2001年   6篇
  2000年   9篇
  1999年   5篇
  1998年   8篇
  1997年   14篇
  1996年   4篇
  1995年   5篇
  1994年   2篇
  1993年   1篇
  1992年   2篇
  1991年   2篇
  1990年   2篇
  1989年   2篇
  1988年   2篇
  1986年   2篇
  1985年   1篇
  1983年   4篇
  1982年   1篇
  1981年   3篇
  1980年   2篇
  1979年   4篇
  1978年   1篇
  1977年   4篇
  1975年   4篇
  1973年   1篇
  1971年   2篇
  1969年   1篇
  1967年   1篇
排序方式: 共有612条查询结果,搜索用时 15 毫秒
531.
532.
Landslide early warning systems (EWS) are an important tool to reduce landslide risks, especially where the potential for structural protection measures is limited. However, design, implementation, and successful operation of a landslide EWS is complex and has not been achieved in many cases. Critical problems are uncertainties related to landslide triggering conditions, successful implementation of emergency protocols, and the response of the local population. We describe here the recent implementation of a landslide EWS for the Combeima valley in Colombia, a region particularly affected by landslide hazards. As in many other cases, an insufficient basis of data (rainfall, soil measurements, landslide event record) and related uncertainties represent a difficult complication. To be able to better assess the influence of the different EWS components, we developed a numerical model that simulates the EWS in a simplified yet integrated way. The results show that the expected landslide-induced losses depend nearly exponentially on the errors in precipitation measurements. Stochastic optimization furthermore suggests an increasing adjustment of the rainfall landslide-triggering threshold for an increasing observation error. These modeling studies are a first step toward a more generic and integrated approach that bears important potential for substantial improvements in design and operation of a landslide EWS.  相似文献   
533.
Uranium minerals from the San Marcos District, Chihuahua, Mexico   总被引:1,自引:0,他引:1  
The mineralogy of the two uranium deposits (Victorino and San Marcos I) of Sierra San Marcos, located 30 km northwest of Chihuahua City, Mexico, was studied by optical microscopy, powder X-ray diffraction with Rietveld analysis, scanning electron microscopy with energy dispersive X-ray analysis, inductively coupled plasma spectrometry, and gamma spectrometry. At the San Marcos I deposit, uranophane Ca(UO2)2Si2O7·6(H2O) (the dominant mineral at both deposits) and metatyuyamunite Ca(UO2)(V2O8)·3(H2O) were observed. Uranophane, uraninite (UO2+x), masuyite Pb(UO2)3O3(OH)·3(H2O), and becquerelite Ca(UO2)6O4(OH)6 ·(8H2O) are present at the Victorino deposit. Field observations, coupled with analytical data, suggest the following sequence of mineralization: (1) deposition of uraninite, (2) alteration of uraninite to masuyite, (3) deposition of uranophane, (4) micro-fracturing, (5) calcite deposition in the micro-fractures, and (6) formation of becquerelite. The investigated deposits were formed by high-to low-temperature hydrothermal activity during post-orogenic evolution of Sierra San Marcos. The secondary mineralization occurred through a combination of hydrothermal and supergene alteration events. Becquerelite was formed in situ by reaction of uraninite with geothermal carbonated solutions, which led to almost complete dissolution of the precursor uraninite. The Victorino deposit represents the second known occurrence of becquerelite in Mexico, the other being the uranium deposits at Peña Blanca in Chihuahua State.  相似文献   
534.
Uncrewed aerial systems (UAS), combined with structure-from-motion photogrammetry, has already proven to be very powerful for a wide range of geoscience applications and different types of UAS are used for scientific and commercial purposes. However, the impact of the UAS used on the accuracy of the point clouds derived is not fully understood, especially for the quantitative analysis of geomorphic changes in complex terrain. Therefore, in this study, we aim to quantify the magnitude of systematic and random error in digital elevation models derived from four commonly used UAS (XR6/Sony α6000, Inspire 2/X4s, Phantom 4 Pro+, Mavic Pro) following different flight patterns. The vertical error of each elevation model is evaluated through comparison with 156 GNSS reference points and the normal distribution and spatial correlation of errors are analysed. Differences in mean errors (−0.4 to −1.8 cm) for the XR6, Inspire 2 and Phantom 4 Pro are significant but not relevant for most geomorphological applications. The Mavic Pro shows lower accuracies with mean errors up to 4.3 cm, thus showing a higher influence of random errors. QQ plots revealed a deviation of errors from a normal distribution in almost all data. All UAS data except Mavic Pro exhibit a pure nugget semivariogram, suggesting spatially uncorrelated errors. Compared to the other UAS, the Mavic Pro data show trends (i.e. differences increase with distance across the survey—doming) and the range of semivariances is 10 times greater. The lower accuracy of Mavic Pro can be attributed to the lower GSD at the same flight altitude and most likely, the rolling shutter sensor has an effect on the accuracy of the camera calibration. Overall, our study shows that accuracies depend highly on the chosen data sampling strategy and that the survey design used here is not suitable for calibrating all types of UAS camera equally.  相似文献   
535.
After molecular nitrogen, methane is the most abundant species in Titan’s atmosphere and plays a major role in its energy budget and its chemistry. Methane has strong bands at 3.3 μm emitting mainly at daytime after absorption of solar radiation. This emission is strongly affected by non-local thermodynamic equilibrium (non-LTE) in Titan’s upper atmosphere and, hence, an accurate modeling of the non-LTE populations of the emitting vibrational levels is necessary for its analysis. We present a sophisticated and extensive non-LTE model which considers 22 CH4 levels and takes into account all known excitation mechanisms in which they take part. Solar absorption is the major excitation process controlling the population of the v3-quanta levels above 1000 km whereas the distribution of the vibrational energy within levels of similar energy through collisions with N2 is also of importance below that altitude. CH4-CH4 vibrational exchange of v4-quanta affects their population below 500 km. We found that the ν3 → ground band dominates Titan’s 3.3 μm daytime limb radiance above 750 km whereas the ν3 + ν4 → ν4 band does below that altitude and down to 300 km. The ν3 + ν2 → ν2, the 2ν3 → ν3, and the 13CH4ν3 → ground bands each contribute from 5% to 8% at regions below 800 km. The ν3 + 2ν4 → 2ν4and ν2 + ν3 + ν4 → ν2 + ν4 bands each contribute from 2% to 5% below 650 km. Contributions from other CH4 bands are negligible. We have used the non-LTE model to retrieve the CH4 abundance from 500 to 1100 km in the southern hemisphere from Cassini-VIMS daytime measurements near 3.3 μm. Our retrievals show good agreement with previous measurements and model results, supporting a weak deviation from well mixed values from the lower atmosphere up to 1000 km.  相似文献   
536.
A minimum of angular velocity is not found at the equator as suggested by Gilman, but at a latitude of 6° in both hemispheres.  相似文献   
537.
Celestial Mechanics and Dynamical Astronomy - In this paper the relation between the Von Zeipel generating functions, in two canonical systems, is considered. Explicit recursive formulae between...  相似文献   
538.
539.
540.
The precise study of adsorption mechanisms at solid–liquid interfaces requires a good analysis of the surface heterogeneity of the studied solids. For that purpose, molecular probe technique is one of the most powerful, especially at solid–gas interfaces. Indeed, low-pressure gas adsorption coupled to modelling of derivative adsorption isotherms as a function of logarithm of pressure allows to study qualitatively and quantitatively the effect of surface heterogeneity on the energy distribution of adsorption centres. The present review points out the interests of that approach to determine the shape of particles, the presence of high-energy adsorption sites and the surface polarity. Results comparing adsorption at solid–gas and solid–liquid interfaces are also mentioned. To cite this article: F. Villiéras et al., C. R. Geoscience 334 (2002) 597–609.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号