首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   29篇
  免费   0篇
天文学   29篇
  2000年   1篇
  1998年   5篇
  1996年   4篇
  1995年   4篇
  1993年   1篇
  1992年   2篇
  1990年   2篇
  1988年   1篇
  1987年   2篇
  1986年   2篇
  1985年   1篇
  1979年   1篇
  1976年   1篇
  1973年   1篇
  1970年   1篇
排序方式: 共有29条查询结果,搜索用时 156 毫秒
11.
A statistical analysis of 106 microwave burst spectra shows, that the most frequent value of the spectral index below the peak frequency is 1.4. It is considerably smaller than values found so far and is explained in terms of a thermal and optically thick source whose area increases with decreasing frequency due to temperature and magnetic field inhomogeneities in the source boundary. The interpretation is supported by the absence of correlation between the spectral index and the maximum flux. An estimate of the inhomogeneities is made.  相似文献   
12.
Yu. Yurovsky  A. Magun 《Solar physics》1996,166(2):433-436
The results of observations of type III bursts show that the modulation of the beam of accelerated electrons arises due to a random process with Poisson statistics (noise), but not due to resonant or periodic oscillations.  相似文献   
13.
Rolli  E.  Wülser  J. P.  Magun  A. 《Solar physics》1998,180(1-2):361-375
The 20 August 1992 flare around 14:28 UT was observed in H, H and Ca ii H with the imaging spectrographs at Locarno-Monti, Switzerland, with the radiotelescopes in Bern, and in soft and hard X-rays by the Yohkoh satellite. In this paper we discuss the analysis of the temporal and spatial evolution of this flare, well observed at chromospheric and coronal layers. We find that the chromospheric electron density shows well-correlated rises with the hard X-rays emphasizing the direct response of the chromosphere to the energy deposition. Although both footpoints of the loops show simultaneous rises of the electron density, non-thermal electron injection is only observed in one of the footpoints, while an additional heating mechanism, like thermal conduction, must be assumed for the other footpoint. However, it is puzzling that all the chromospheric observations in both footpoints are delayed by 3 s compared to the hard X-ray light curve. Although this would be compatible with the thermal heating of one footpoint, it is in contradiction to the non-thermal heating of the other one. Finally, we observed evidence that during the first part of the flare a thermal conduction front propagates at a speed of 2000 km s-1 into a second loop, in which the energy release occurs in the second part of the flare.  相似文献   
14.
15.
In this paper a new method for the determination of the position of microwave burst sources on the Sun, its implementation and first observational results, are presented. The 13.7 m antenna at Itapetinga with a five-channel receiver operating at 48 GHz and with a time resolution of 1 ms is used. Five horn antennas clustered around the focus of the Cassegrain reflector provide 5 beams diverging by about 2. This configuration allows the observation of different parts of an active region and the determination of the center of the burst position with an accuracy of 5 to 20 depending on the angular distance relative to the antenna axis. The field of view is 2 by 4. The time resolution of 1 ms is suitable to search for fast structures at 48 GHz. A total bandwidth of 400 MHz is used in order to achieve a sensitivity of 0.04 s.f.u. sufficient for the detection of weak bursts. First observational results of the flare on May 11, 1991 show a well-located source position during all stages.Paper presented at the 4th CESRA workshop in Ouranopolis (Greece) 1991.  相似文献   
16.
Makhmutov  V. S.  Costa  J. E. R.  Raulin  J.-P.  Kaufmann  P.  Lagrotta  P.R.  Giménez de Castro  C.G.  Magun  A.  Arzner  K. 《Solar physics》1998,178(2):393-403
The onset phase of the 22 October 1989 great solar burst was observed at 48 GHz using the multiple beam technique, which allows unambiguous flux determination irrespective of spatial angular position changes in time. We found strong quasi-periodic pulsating structures as the flux started to rise. Two significantly different time scales of 2.5–4.5 s and 0.2–0.5 s have been observed. These pulsations might be related to magnetohydrodynamic perturbations in the active region. However the fast component also might be a signature of the acceleration and/or injection of energetic electrons.  相似文献   
17.
Until recently, most of the information on particle acceleration processes in solar flares has been obtained from hard X-ray and cm-microwave observations. As a rule they provide information on electrons with energies below 300 keV. During recent years it became possible to measure the gamma-ray and millimeter radio emission with improved sensitivities. These spectral ranges carry information on much higher energy electrons. We studied the temporal and spectral behaviour of the radio burst emission at centimeter-millimeter wavelengths (8–50 GHz) by using the data from the patrol instruments of IAP (Bern University). We have analyzed more than 20 impulsive and long duration radio bursts (of 10 s to several 100 s duration).The main finding of the data analysis is the presence of spectral flattening throughout the bursts, which occurs always during the decay phase of flux peaks, at frequencies well above the spectral peak frequency and independently of burst duration. Furthermore, for some of the bursts, the flux maxima at higher frequencies are delayed. These findings can serve as evidence of the hardening of the electron spectrum at energies above some hundreds of keV during the decay phase of cm–mm flux peaks. As a most likely reason for such a hardening we consider Coulomb collisions of energetic electrons continuously injected and trapped in a flaring loop.  相似文献   
18.
Yurovsky  Y.  Magun  A. 《Solar physics》1998,180(1-2):409-426
The distribution of pauses between subsequent elements of a periodic process is symmetric, while a random process produces an asymmetric exponential distribution. The third moment of the pause distribution, which is sensitive to the asymmetry, can therefore be used to discriminate between perodic and random processes. With such a method we analyze the observations of 19 series of solar type III radio bursts and find with a confidence of 0.99 that, on average, the bursts are randomly distributed in time. Only one series can be considered to be periodic with a confidence 0.5. The bandwidth of the repetition frequency of most bursts corresponds to the quality of oscillations of Q¯ = 1.0±0.6 that does not indicates a resonance. Therefore, the modulation of particle beams and intensity of type III radio emission should be considered mainly as the result of random processes. Thus, these properties observed in the majority of radio type III bursts do not support the existence of any periodic or resonant oscillations in the solar corona during flares, although some periodic processes in active regions cannot entirely be ruled out.  相似文献   
19.
Gamma-ray emission extending to energies greater than 2 GeV and lasting at least for two hours as well as 0.8–8.1 MeV nuclear line emission lasting 40 min were observed with very sensitive telescopes aboard the GAMMA and CGRO satellites for the well-developed post-flare loop formation phase of the 3B/X12 flare on June 15, 1991. We undertook an analysis of optical, radio, cosmic-ray, and other data in order to identify the origin of the energetic particles producing these unusual gamma-ray emissions. The analysis yields evidence that the gamma-rays and other emissions, observed well after the impulsive phase of the flare, appear to be initiated by prolonged nonstationary particle acceleration directly during the late phase of the flare rather than by a long-term trapping of energetic electrons and protons accelerated at the onset of the flare. We argue that such an acceleration, including the acceleration of protons up to GeV energies, can be caused by a prolonged post-eruptive energy release following a coronal mass ejection (CME), when the magnetic field above the active region, strongly disturbed by the CME eruption, relaxes to its initial state through magnetic reconnection in the coronal vertical current sheet.  相似文献   
20.
The impulsive solar burst of October 28, 1992 showed temporal and spatial fine structures that were observed at 48 GHz with the multi-beam antenna of the Itapetinga Radio Observatory. The relative positions of burst centroids were determined with a spatial accuracy of 2, with a temporal resolution of 1 millisecond. The burst intensity time profile shows fast pulses of about one second duration, superimposed by subsecond time structures. The spatial analysis of the fast pulses suggests that the emission originated from distinct locations, separated by about 5. Our results favour the idea that impulsive solar bursts are a superposition of small elementary events spread both in time and space, probably resulting from discontinuous energy release processes.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号