首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   72943篇
  免费   1527篇
  国内免费   1170篇
测绘学   1872篇
大气科学   5280篇
地球物理   14626篇
地质学   26414篇
海洋学   6412篇
天文学   16386篇
综合类   341篇
自然地理   4309篇
  2022年   506篇
  2021年   858篇
  2020年   896篇
  2019年   968篇
  2018年   2021篇
  2017年   1890篇
  2016年   2367篇
  2015年   1451篇
  2014年   2319篇
  2013年   3905篇
  2012年   2388篇
  2011年   3241篇
  2010年   2708篇
  2009年   3608篇
  2008年   3345篇
  2007年   3125篇
  2006年   2934篇
  2005年   2410篇
  2004年   2285篇
  2003年   2163篇
  2002年   1983篇
  2001年   1844篇
  2000年   1761篇
  1999年   1410篇
  1998年   1498篇
  1997年   1421篇
  1996年   1123篇
  1995年   1159篇
  1994年   972篇
  1993年   882篇
  1992年   868篇
  1991年   765篇
  1990年   863篇
  1989年   727篇
  1988年   655篇
  1987年   822篇
  1986年   670篇
  1985年   857篇
  1984年   922篇
  1983年   866篇
  1982年   834篇
  1981年   710篇
  1980年   665篇
  1979年   612篇
  1978年   610篇
  1977年   554篇
  1976年   541篇
  1975年   500篇
  1974年   509篇
  1973年   472篇
排序方式: 共有10000条查询结果,搜索用时 10 毫秒
501.
Wyllie's time-average equation and subsequent refinements have been used for over 20 years to estimate the porosity of reservoir rocks from compressional (P)-wave velocity (or its reciprocal, transit time) recorded on a sonic log. This model, while simple, needs to be more convincingly explained in theory and improved in practice, particularly by making use of shear (S)-wave velocity. One of the most important, although often ignored, factors affecting elastic velocities in a rock is pore structure, which is also a controlling factor for transport properties of a rock. Now that S-wave information can be obtained from the sonic log, it may be used with P-waves to provide a better understanding of pore structure. A new acoustic velocities-to-porosity transform based on an elastic velocity model developed by Kuster and Toksöz is proposed. Employing an approximation to an equivalent pore aspect ratio spectrum, pore structure for reservoir rocks is taken into account, in addition to total pore volume. Equidimensional pores are approximated by spheres and rounded spheroids, while grain boundary pores and flat pores are approximated by low aspect ratio cracks. An equivalent pore aspect ratio spectrum is characterized by a power function which is determined by compressional-and shear-wave velocities, as well as by matrix and inclusion properties. As a result of this more sophisticated elastic model of porous rocks and a stricter theory of elastic wave propagation, the new method leads to a more satisfactory interpretation and fuller use of seismic and sonic log data. Calculations using the new transform on data for sedimentary rocks, obtained from published literature and laboratory measurements, are presented and compared at atmospheric pressure with those estimated from the time-average equation. Results demonstrate that, to compensate for additional complexity, the new method provides more detailed information on pore volume and pore structure of reservoir rocks. Examples are presented using a realistic self-consistent averaging scheme to consider interactions between pores, and the possibility of extending the method to complex lithologies and shaly rocks is discussed.  相似文献   
502.
503.
The variations in average annual surface air temperature, precipitation, and runoff in the Selenga River basin (within Russia) are analyzed. It is demonstrated that the considerable increase in average annual temperature of surface air layers occurred in the 1980s-1990s. The decrease in peak water discharge in the rivers and the increase in the frequency of low-water periods were revealed in the forest-steppe and steppe zones of the Selenga River basin in 2001-2010. In the southwestern mountain regions (the Dzhida River basin) the river runoff increased during that period.  相似文献   
504.
龙晓君  李小建 《地理科学》2017,37(10):1577-1584
使用SRTM DEM、土地覆被、冻融侵蚀、河流沟谷等多源数据,对区分海拔等级的指标地物作了具体分析,以指标地物的平均海拔为依据,通过分级指标对象(如冰川、林线)分布高程重合或贴近的多条等高线圈形成分级等高平面,对陆地地貌进行切割划分,用每组指标对象偏离等高平面的值作为控制量(控制点),插值重构分级参考曲面。该方案最大限度突出指标的地理意义,形成的海拔分级结果与中国地理系统分布特征更为贴近,可以为中国大尺度地貌基本形态的划分提供参考。  相似文献   
505.
Detailed knowledge of the flood period of Arctic rivers remains one of the few factors impeding rigorous prediction of the effect of climate change on carbon and related element fluxes from the land to the Arctic Ocean. In order to test the temporal and spatial variability of element concentration in the Ob River (western Siberia) water during flood period and to quantify the contribution of spring flood period to the annual element export, we sampled the main channel year round in 2014–2017 for dissolved C, major, and trace element concentrations. We revealed high stability (approximately ≤10% relative variation) of dissolved C, major, and trace element concentrations in the Ob River during spring flood period over a 1‐km section of the river channel and over 3 days continuous monitoring (3‐hr frequency). We identified two groups of elements with contrasting relationship to discharge: (a) DIC and soluble elements (Cl, SO4, Li, B, Na, Mg, Ca, P, V, Cr, Mn, As, Rb, Sr, Mo, Ba, W, and U) negatively correlated (p < 0.05) with discharge and exhibited minimal concentrations during spring flood and autumn high flow and (b) DOC and particle‐reactive elements (Al, Fe, Ti, Y, Zr, Nb, Cs, REEs, Hf, Tl, Pb, and Th), some nutrients (K), and metalloids (Ge, Sb, and Te), positively correlated (p < 0.05) with discharge and showed the highest concentrations during spring flood. We attribute the decreased concentration of soluble elements with discharge to dilution by groundwater feeding and increased concentration of DOC and particle‐reactive metals with discharge to leaching from surface soil, plant litter, and suspended particles. Overall, the present study provides first‐order assessment of fluxes of major and trace elements in the middle course of the Ob River, reveals their high temporal and spatial stability, and characterizes the mechanism of river water chemical composition acquisition.  相似文献   
506.
507.
Methods of iteration are discussed in relation to Kepler's equation, and various initial guesses are considered, with possible strategies for choosing them. Several of these are compared; the method of iteration used in the comparisons has local convergence of the fourth order.WANG Laboratories, Inc.  相似文献   
508.
509.
A numerical model is proposed to describe the formation of ice jams under the effect of a release wave.  相似文献   
510.
The Anarak, Jandaq and Posht-e-Badam metamorphic complexes occupy the NW part of the Central-East Iranian Microcontinent and are juxtaposed with the Great Kavir block and Sanandaj-Sirjan zone. Our recent findings redefine the origin of these complexes, so far attributed to the Precambrian–Early Paleozoic orogenic episodes, and now directly related to the tectonic evolution of the Paleo-Tethys Ocean. This tectonic evolution was initiated by Late Ordovician–Early Devonian rifting events and terminated in the Triassic by the Eocimmerian collision event due to the docking of the Cimmerian blocks with the Asiatic Turan block.

The “Variscan accretionary complex” is a new name we proposed for the most widely distributed metamorphic rocks connected to the Anarak and Jandaq complexes. This accretionary complex exposed from SW of Jandaq to the Anarak and Kabudan areas is a thick and fine grain siliciclastic sequence accompanied by marginal-sea ophiolitic remnants, including gabbro-basalts with a supra-subduction-geochemical signature. New 40Ar/39Ar ages are obtained as 333–320 Ma for the metamorphism of this sequence under greenschist to amphibolite facies. Moreover, the limy intercalations in the volcano-sedimentary part of this complex in Godar-e-Siah yielded Upper Devonian–Tournaisian conodonts. The northeastern part of this complex in the Jandaq area was intruded by 215 ± 15 Ma arc to collisional granite and pegmatites dated by ID-TIMS and its metamorphic rocks are characterized by some 40Ar/39Ar radiometric ages of 163–156 Ma.

The “Variscan” accretionary complex was northwardly accreted to the Airekan granitic terrane dated at 549 ± 15 Ma. Later, from the Late Carboniferous to Triassic, huge amounts of oceanic material were accreted to its southern side and penetrated by several seamounts such as the Anarak and Kabudan. This new period of accretion is supported by the 280–230 Ma 40Ar/39Ar ages for the Anarak mild high-pressure metamorphic rocks and a 262 Ma U–Pb age for the trondhjemite–rhyolite association of that area. The Triassic Bayazeh flysch filled the foreland basin during the final closure of the Paleo-Tethys Ocean and was partly deposited and/or thrusted onto the Cimmerian Yazd block.

The Paleo-Tethys magmatic arc products have been well-preserved in the Late Devonian–Carboniferous Godar-e-Siah intra-arc deposits and the Triassic Nakhlak fore-arc succession. On the passive margin of the Cimmerian block, in the Yazd region, the nearly continuous Upper Paleozoic platform-type deposition was totally interrupted during the Middle to Late Triassic. Local erosion, down to Lower Paleozoic levels, may be related to flexural bulge erosion. The platform was finally unconformably covered by Liassic continental molassic deposits of the Shemshak.

One of the extensional periods related to Neo-Tethyan back-arc rifting in Late Cretaceous time finally separated parts of the Eocimmerian collisional domain from the Eurasian Turan domain. The opening and closing of this new ocean, characterized by the Nain and Sabzevar ophiolitic mélanges, finally transported the Anarak–Jandaq composite terrane to Central Iran, accompanied by large scale rotation of the Central-East Iranian Microcontinent (CEIM). Due to many similarities between the Posht-e-Badam metamorphic complex and the Anarak–Jandaq composite terrane, the former could be part of the latter, if it was transported further south during Tertiary time.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号