首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   272239篇
  免费   4443篇
  国内免费   3566篇
测绘学   7263篇
大气科学   19889篇
地球物理   56899篇
地质学   95790篇
海洋学   22745篇
天文学   58094篇
综合类   1130篇
自然地理   18438篇
  2021年   2306篇
  2020年   2666篇
  2019年   2906篇
  2018年   5051篇
  2017年   4710篇
  2016年   6587篇
  2015年   4336篇
  2014年   7022篇
  2013年   14325篇
  2012年   7152篇
  2011年   9215篇
  2010年   8194篇
  2009年   10733篇
  2008年   9405篇
  2007年   9144篇
  2006年   9824篇
  2005年   8105篇
  2004年   7969篇
  2003年   7490篇
  2002年   7015篇
  2001年   6180篇
  2000年   6054篇
  1999年   5262篇
  1998年   5278篇
  1997年   5071篇
  1996年   4716篇
  1995年   4463篇
  1994年   4141篇
  1993年   3884篇
  1992年   3670篇
  1991年   3616篇
  1990年   3789篇
  1989年   3544篇
  1988年   3319篇
  1987年   3870篇
  1986年   3432篇
  1985年   4249篇
  1984年   4760篇
  1983年   4427篇
  1982年   4330篇
  1981年   3944篇
  1980年   3652篇
  1979年   3515篇
  1978年   3502篇
  1977年   3290篇
  1976年   3063篇
  1975年   2966篇
  1974年   2920篇
  1973年   3085篇
  1972年   2027篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
911.
912.
The reservoir quality of Jurassic and Triassic fluvial and lacustrine-deltaic sandstones of the Yanchang Oil Field in the Ordos Basin is strongly influenced by the burial history and facies-related diagenetic events. The fluvial sandstones have a higher average porosity (14.8%) and a higher permeability (12.7×10?3 ?m2) than those of the deltaic sandstones (9.8% and 5.8 ×10?3 ?m2, respectively). The burial compaction, which resulted in 15% and 20% porosity loss for Jurassic and Triassic sandstones, respectively, is the main factor causing the loss of porosity both for the Jurassic and Triassic sandstones. Among the cements, carbonate is the main one that reduced the reservoir quality of the sandstones. The organic acidic fluid derived from organic matter in the source rocks, the inorganic fluid from rock-water reaction during the late diagenesis, and meteoric waters during the epidiagenesis resulted in the formation of dissolution porosity, which is the main reason for the enhancement of reservoir-quality.  相似文献   
913.
Uniform models for the Earth–ionosphere cavity are considered with particular attention to the physical properties of the ionosphere for the extremely low frequency (ELF) range. Two consistent features have long been recognized for the range: the presence of two distinct altitude layers of maximum energy dissipation within the lower ionosphere, and a “knee”-like change in the vertical conductivity profile representing a transition in dominance from ion-dominated to electron-dominated conductivity. A simplified two-exponential version of the Greifinger and Greifinger (1978) technique widely used in ELF work identifies two slopes in the conductivity profile and, providing accurate results in the ELF communication band (45–75 Hz), simulates too flat a frequency dependence of the quality factor within the Schumann resonance frequency range (5–40 Hz). The problem is traced to the upward migration, with frequency increasing, of the lower dissipation layer through the “knee” region resulting in a pronounced decrease of the effective scale height for conductivity. To overcome this shortcoming of the two-exponential approximation and still retain valuable model analyticity, a more general approach (but still based on the Greifinger and Greifinger formalism) is presented in the form of a “knee” model whose predictions for the modal frequencies, the wave phase velocities and the quality factors reasonably represent observations in the Schumann resonance frequency range.  相似文献   
914.
Data of hydrological and hydrochemical observations conducted in August 2000 at Lake Seliger and its major tributaries are presented. The analyzed characteristics included: O2, H2S, CH4, microelements; mineral and organic compounds of P and N, ionic composition components (HCO3 , Cl, Na+, K+, dry residue, pH; color index, electrical conductivity. Bottom sediment samples were analyzed for microelement concentrations, CH4, oil hydrocarbons. The influence of the basin on the ecological state of the lake was assessed, and tendencies in the evolution of its ecosystem are analyzed. It is shown that the ecological conditions of the lake has not changed significantly since 1960–1991, however, nutrient concentrations in the lake water was found to increase.  相似文献   
915.
916.
Krainov  S. R.  Ryzhenko  B. N. 《Water Resources》2002,29(1):21-32
The problem of the diversity of the geochemical types of carbon dioxide waters (CDW) in petrografically and mineralogically uniform crystalline rock masses is solved with allowance made for the effect of different boundary conditions (physicochemical parameters) on the geochemical effect of interaction in the rock–water system. The formation of the entire geochemical spectrum of CDW in crystalline rock masses is shown to be explicable on the basis of a model of interaction in granite–water systems at different mass ratios of reacting rock (S) and water (L), different temperatures T, and equilibrium concentrations of dissolved CO2 (P CO2).  相似文献   
917.
Soil degradation: a global problem endangering sustainable development   总被引:4,自引:0,他引:4  
1 Introduction Soil is not only the major natural resource on which human being depends for the production of food, feed, fiber, renewable energy and raw materials, but also plays a key role in maintaining the complex terrestrial ecosystems and climate systems of this planet. Recent rapid increase in the human population is placing a great strain on the worlds soil resources. Only about 11% of the global land surface covered by the soils are being used to raise crops and livestock, in other …  相似文献   
918.
Based on energy balance equation and mass transfer equation, a general model to estimate actual evaporation from non-saturated surfaces was derived. Making use of two concepts, “relative evaporation” and “relative drying power”, a relationship was established to account for the departure from saturated conditions. Using this model, the actual evaporation (evapotranspiration) can be calculated without the need of potential evaporation estimation. Furthermore, the model requires only a few meteorological parameters that are readily and routinely obtainable at standard weather stations. Based on nearly 30 years data of 432 meteorological stations and 512 hydrological stations in China, in combined with GIS, nine typical river basins were selected. Using the data of the selected river basins, the model was tested. The results show that the actual evaporation rate can be estimated with an error of less than 10% in most areas of China, except few years in the Yellow River Basin.  相似文献   
919.
Natural Resources Research - Exploration ventures in frontier areas have high risks. Before committing to them, firms prepare regional resource assessments to evaluate the potential payoffs. With...  相似文献   
920.
The granulometric composition of terrigenous deep-sea sediments provides information on current speed if certain frame conditions are fulfilled. These include that current transport is the only transport process. At high latitudes this type of investigation is impaired due to the influence of ice-rafted debris (IRD) which contaminates the current-sorted grain size fractions. This study presents a new method that addresses this problem by setting the ice-rafted sand in relation to the silt of both current- and ice-transported origin. Deviations from the resulting regression function are then used to determine the behaviour of the silt mean grain size as a function of current speed largely independent from IRD bias. The study is based on sediments from the Yermak Plateau, Arctic Ocean, a region influenced by IRD brought with the south-headed Transpolar Drift and by north-directed bottom currents. The IRD correction results in displaying changes of current speed at much higher clarity; climate forcing of the currents becomes more evident. For example, the 8200 year cold event shows up as a major event in the corrected record whereas it is hardly visible in the original record.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号