首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   96576篇
  免费   1610篇
  国内免费   802篇
测绘学   2245篇
大气科学   6196篇
地球物理   19177篇
地质学   35157篇
海洋学   8581篇
天文学   22410篇
综合类   284篇
自然地理   4938篇
  2022年   692篇
  2021年   1159篇
  2020年   1263篇
  2019年   1357篇
  2018年   2959篇
  2017年   2777篇
  2016年   3299篇
  2015年   1713篇
  2014年   3131篇
  2013年   5155篇
  2012年   3356篇
  2011年   4391篇
  2010年   3804篇
  2009年   4835篇
  2008年   4447篇
  2007年   4438篇
  2006年   4063篇
  2005年   2952篇
  2004年   2804篇
  2003年   2642篇
  2002年   2456篇
  2001年   2329篇
  2000年   2143篇
  1999年   1662篇
  1998年   1750篇
  1997年   1718篇
  1996年   1357篇
  1995年   1403篇
  1994年   1206篇
  1993年   1081篇
  1992年   1056篇
  1991年   983篇
  1990年   1102篇
  1989年   945篇
  1988年   860篇
  1987年   1017篇
  1986年   814篇
  1985年   1089篇
  1984年   1176篇
  1983年   1096篇
  1982年   1047篇
  1981年   906篇
  1980年   866篇
  1979年   764篇
  1978年   793篇
  1977年   716篇
  1976年   670篇
  1975年   647篇
  1974年   646篇
  1973年   642篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
731.
Rock associations characterized by heterogeneous sets of petrogeochemical parameters were compared by quantifying the degree of their similarity-dissimilarity and searching for discrimination trends between them. Using procedures specially developed for this purpose, it was demonstrated for the first time that the lithotectonic complexes of the Murmansk domain are fundamentally different from those of typical granulite-gneiss terrains and resemble the granite-greenstone terrains of the Baltic shield, Greenland, and Canada. Based on the whole data set, the Murmansk domain can be considered as a deeply eroded Archean granite-greenstone terrain retaining only the tonalite-trondhjemite-gneiss basement with abundant supracrustal enclaves. A trend of the compositional difference between the older and younger rock associations is similar to that between the tholeiitic and boninitic volcanic series. It was suggested that the petrogeochemical “age” trend reflects the initial stage of the compositional evolution of the metamagmatic rocks of the region from metamorphic rocks similar to tholeiites at the early stages to the Paleoproterozoic boninite-like rocks, which are believed to be linked to the unique PGE-bearing province of the northeastern Baltic shield. This implies that the specific metallogenic features of the region emerged already in the Archean, which supported the suggestion on the long duration of geological processes in the Early Precambrian.  相似文献   
732.
Petrological and geochemical data obtained on the Quaternary lavas of volcanoes at Spitsbergen Island indicate that the rocks were produced via the deep-seated crystallization of parental alkaline magmas at 8–10 kbar. The character of clinopyroxene enrichment in incompatible elements indicates that the mineral crystallized from more enriched melts than those inferred from the composition of the host lavas. These melts were close to the parental melts previously found as veinlets in mantle hyperbasite xenoliths in the lavas. According to the character of their enrichment in Pb and Sr radiogenic isotopes and depletion in Nd, the basalts from Spitsbergen Island define a single trend with the weakly enriched tholeiites of the Knipovich Ridge, a fact suggesting the closeness of the enriched sources beneath the continental margin of Spitsbergen and beneath the spreading zone. Magmatic activity at Spitsbergen was related to the evolution of the Norwegian-Greenland basin, which evolved in pulses according to the shift of the spreading axes. The most significant of the latter events took place in the Neogene, when the Knipovich Ridge obtained its modern position near the western boundary of Spitsbergen. Early in the course of the evolution, the emplacement of alkaline melts generated at Spitsbergen into the oceanic mantle could form the enriched mantle, which was later involved in the melting process beneath the spreading zone.  相似文献   
733.
734.
Ilmenite in coronitic gabbros from the Bamble and Kongsberg sectors, southern Norway, is surrounded by zircons ranging in diameters from a fraction of a micrometer to 10 μm across. The zircons are inert during subsequent metamorphism (amphibolite- to pumpellyite–prehnite facies) and metasomatism (scapolitization and albitization) and can be found as trails in silicates (phlogopite, talc, chlorite, amphibole, albite, and tourmaline) in the altered rocks. The trails link up to form polygons outlining the former oxide grain boundary. This 3-dimensional framework of zircons is used to (a) recognize metasomatic origin of rocks, (b) quantify the mobility of elements during mineral replacement, (c) establish the growth direction of reaction fronts and to identify the reaction mechanism as dissolution–reprecipitation. Zircon coronas on Fe–Ti oxides have been described from a number of terrains and appear to be common in mafic rocks (gabbros and granulites) providing a tool for a better understanding of metasomatic and metamorphic reactions.  相似文献   
735.
Olivine crystals were grown in the presence of a hydrous silicate fluid during multi-anvil experiments at 8 GPa and 1,000–1,600°C. Experiments were conducted both in a simple system (FeO–MgO–SiO2–H2O) and in a more complex system containing additional elements (CaO–Na2O–Al2O3–Cr2O3–TiO2–FeO–MgO–SiO2–H2O). Silica activity was buffered by the presence of either pyroxene (high a SiO2) or ferropericlase (low a SiO2), and was buffered by the presence of Ni + NiO or Fe + FeO, or constrained by the presence of Fe2O3. Raman spectroscopy was used to identify pyroxene polymorphs in the run products. Clinoenstatite was present in the 1,000°C experiment, and enstatite in experiments at 1,400–1,520°C. The H2O content of olivine was measured using secondary ion mass spectroscopy, and infrared spectroscopy was used to investigate the nature of hydrous defects. The H2O storage capacity of olivine decreases with increasing temperature at 8 GPa. In contrast to previous experimental results at ≤2 GPa, no significant effect of varying oxygen fugacity is evident, but H2O storage capacity is enhanced under conditions of low silica activity. No significant growth of low wavenumber (<3,400 cm−1) peaks, generally associated with high at low pressure, was observed in the FTIR spectra of olivine from the high experiments. Our experiments show that previous high pressure H2O storage capacity measurements for olivine synthesized under more oxidizing conditions than the Earth’s mantle are not likely to be compromised by the of the experiments. However, the considerable effect of temperature on H2O storage capacity in olivine must be taken into account to avoid overestimation of the bulk upper mantle H2O storage capacity.  相似文献   
736.
Tourmaline is widespread in metapelites and pegmatites from the Neoproterozoic Damara Belt, which form the basement and potential source rocks of the Cretaceous Erongo granite. This study traces the B-isotope variations in tourmalines from the basement, from the Erongo granite and from its hydrothermal stage. Tourmalines from the basement are alkali-deficient schorl-dravites, with B-isotope ratios typical for continental crust (δ11B average −8.4‰ ± 1.4, n = 11; one sample at −13‰, n = 2). Virtually all tourmaline in the Erongo granite occurs in distinctive tourmaline-quartz orbicules. This “main-stage” tourmaline is alkali-deficient schorl (20–30% X-site vacancy, Fe/(Fe + Mg) 0.8–1), with uniform B-isotope compositions (δ11B −8.7‰ ± 1.5, n = 49) that are indistinguishable from the basement average, suggesting that boron was derived from anatexis of the local basement rocks with no significant shift in isotopic composition. Secondary, hydrothermal tourmaline in the granite has a bimodal B-isotope distribution with one peak at about −9‰, like the main-stage tourmaline, and a second at −2‰. We propose that the tourmaline-rich orbicules formed late in the crystallization history from an immiscible Na–B–Fe-rich hydrous melt. The massive precipitation of orbicular tourmaline nearly exhausted the melt in boron and the shift of δ11B to −2‰ in secondary tourmaline can be explained by Rayleigh fractionation after about 90% B-depletion in the residual fluid. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   
737.
Spatial variations in grain-size parameters (i.e. grain-size trends) contain information on sediment transport patterns. Analytical procedures have been proposed using the grain-size trend to determine net sediment transport pathways. In the first part of this study, the fundamentals of the theory are presented through methods for analysing 1D and 2D variations. The methods used are critically discussed, while pointing out some severe problems. So far, these methods suffer from limitations leading to serious interpretational errors, making it necessary to take account of two kinds of uncertainties. Inputs uncertainties are linked to the physical sediment properties as well as procedures of sampling and analysis. Model uncertainties are then discussed for each step of the grain-size trend analysis. The validity of Sediment Trend Analysis under natural conditions is tested against published field studies to determine the most appropriate variation trend to use in a specific environment. Proposals are given for each step of the procedure for optimal use of the method using a Quality Assurance (QA) approach. Further developments are proposed, such as integration into a Geographic Information System.  相似文献   
738.
The Biwabik Iron Formation of Minnesota (1.9 Ga) underwent contact metamorphism by intrusion of the Duluth Complex (1.1 Ga). Apparent quartz–magnetite oxygen isotope temperatures decrease from ∼700°C at the contact to ∼375°C at 2.6 km distance (normal to the contact in 3D). Metamorphic pigeonite at the contact, however, indicates that peak temperatures were greater than 825°C. The apparent O isotope temperatures, therefore, reflect cooling, and not peak metamorphic conditions. Magnetite was reset in δ18O as a function of grain size, indicating that isotopic exchange was controlled by diffusion of oxygen in magnetite for samples from above the grunerite isograd. Apparent quartz–magnetite O isotope temperatures are similar to calculated closure temperatures for oxygen diffusion in magnetite at a cooling rate of ∼5.6°C/kyr, which suggests that the Biwabik Iron Formation cooled from ∼825 to 400°C in ∼75 kyr at the contact with the Duluth Complex. Isotopic exchange during metamorphism also occurred for Fe, where magnetite–Fe silicate fractionations decrease with increasing metamorphic grade. Correlations between quartz–magnetite O isotope fractionations and magnetite–iron silicate Fe isotope fractionations suggest that both reflect cooling, where the closure temperature for Fe was higher than for O. The net effect of metamorphism on δ18O–δ56Fe variations in magnetite is a strong increase in δ18OMt and a mild decrease in δ56Fe with increasing metamorphic grade, relative to the isotopic compositions that are expected at the low temperatures of initial magnetite formation. If metamorphism of Iron Formations occurs in a closed system, bulk O and Fe isotope compositions may be preserved, although re-equilibration among the minerals may occur for both O and Fe isotopes. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   
739.
Basaltic pyroclastic volcanism takes place over a range of scales and styles, from weak discrete Strombolian explosions (~102–103 kg s?1) to Plinian eruptions of moderate intensity (107–108 kg s?1). Recent well-documented historical eruptions from Etna, Kīlauea and Stromboli typify this diversity. Etna is Europe's largest and most voluminously productive volcano with an extraordinary level and diversity of Strombolian to subplinian activity since 1990. Kīlauea, the reference volcano for Hawaiian fountaining, has four recent eruptions with high fountaining (>400 m) activity in 1959, 1960, 1969 (–1974) and 1983–1986 (–2008); other summit (1971, 1974, 1982) and flank eruptions have been characterized by low fountaining activity. Stromboli is the type location for mildly explosive Strombolian eruptions, and from 1999 to 2008 these persisted at a rate of ca. 9 per hour, briefly interrupted in 2003 and 2007 by vigorous paroxysmal eruptions. Several properties of basaltic pyroclastic deposits described here, such as bed geometry, grain size, clast morphology and vesicularity, and crystal content are keys to understand the dynamics of the parent eruptions.The lack of clear correlations between eruption rate and style, as well as observed rapid fluctuations in eruptive behavior, point to the likelihood of eruption style being moderated by differences in the fluid dynamics of magma and gas ascent and the mechanism by which the erupting magma fragments. In all cases, the erupting magma consists of a mixture of melt and gaseous bubbles. The depth and rate of degassing, melt rheology, bubble rise and coalescence rates, and extent of syn-eruptive microlite growth define complex feedbacks that permit reversible shifts between fragmentation mechanisms and in eruption style and intensity. However, many basaltic explosive eruptions end after an irreversible shift to open-system outgassing and microlite crystallization in melt within the conduit.Clearer understanding of the factors promoting this diversity of basaltic pyroclastic eruptions is of fundamental importance in order to improve understanding of the range of behaviors of these volcanoes and assess hazards of future explosive events at basaltic volcanoes. The three volcanoes used for this review are the sites of large and growing volcano-tourism operations and there is a public need both for better knowledge of the volcanoes’ behavior and improved forecasting of the likely course of future eruptions.  相似文献   
740.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号