Water relation characteristics of the desert legumeAlhagi sparsifolia were investigated during the vegetation period from April to September 1999 in the foreland of Qira oasis at the southern fringe of the Taklamakan Desert, Xinjiang Uygur Autonomous Region of China. The seasonal variation of predawn water potentials and of diurnal water potential indicated thatAlhagi plants were well water supplied over the entire vegetation period. Decreasing values in the summer months were probably attributed to increasing temperatures and irradiation and therefore a higher evapotranspirative demand. Data from pressure-volume analysis confirmed thatAlhagi plants were not drought stressed and xylem sap flow measurements indicated thatAlhagi plants used large amounts of water during the summer months. Flood irrigation had no influence on water relations inAlhagi probably becauseAlhagi plants produced only few fine roots in the upper soil layers. The data indicate thatAlhagi sparsifolia is a drought-avoiding species that utilizes ground water by a deep roots system, which is the key characteristic to adjust the hyper-arid environment. Because growth and survival ofAlhagi depends on ground water supply, it is important that variations of ground water depth are kept to a minimum. The study will provide a theoretical basis for the restoration and management of natural vegetation around oasis in arid regions.
A field tracer test performed under natural flow conditions at the Twin Lake test site, Chalk River Laboratories of the Atomic Energy of Canada Ltd. in Chalk River, Ontario, Canada, using tritium and three herbicides (Chlortoluron, Terbuthylazine, and Pendimethalin) was interpreted using the dispersion equation with a combined reaction model. The reaction model couples an instantaneous equilibrium reaction governed by a linear adsorption isotherm with a reversible or irreversible kinetic reaction of the first order, and decay. An improved interpretation method consists of a simultaneous fitting of theoretical concentration and mass-recovery curves to the experimental data, which leads to a more reliable determining of reaction models and improves the accuracy of fitting. Tritium served as the reference tracer to determine the flow velocity, dispersivity, and the recovery of the herbicides. Chlortoluron was slightly delayed by equilibrium exchange with strongly reduced concentration due to an irreversible kinetic reaction and/or decay. Terbuthilazine was slightly delayed by equilibrium exchange, with strongly reduced concentration due to a reversible kinetic reaction with some influence of decay. A strong equilibrium reaction and a strong reversible kinetic reaction without degradation governed the transport of Pendimethalin, reducing considerably its concentration. The results obtained show that simulations based only on Kd and decay constant, especially if these parameters are found in the laboratory, may considerably differ from those performed with reaction parameters determined in properly performed field tests. The dominant reaction types, and the values of parameters found in the study, supply useful information on the transport of the investigated herbicides in sandy aquifers under natural flow conditions. 相似文献
The method for measuring solar limb darkening has been proposed, and the formulas, describing the law of solar limb darkening
in the wings of the CaII H (396.849 nm) and K (393.369 nm) lines, have been derived. To operate at arbitrary points on the
Sun’s surface, it is necessary to know the law of solar limb darkening, which is specific in different spectral regions. The
procedure of spectrum correction for a flat field, proposed in our previous works, is based on comparing line-free spectral
regions with the solar center reference spectrum from the atlas by Brault and Neckel [1994]. 相似文献
The Tarim Basin in western China formed the easternmost margin of a shallow epicontinental sea that extended across Eurasia and was well connected to the western Tethys during the Paleogene. Climate modelling studies suggest that the westward retreat of this sea from Central Asia may have been as important as the Tibetan Plateau uplift in forcing aridification and monsoon intensification in the Asian continental interior due to the redistribution of the land‐sea thermal contrast. However, testing of this hypothesis is hindered by poor constraints on the timing and precise palaeogeographic dynamics of the retreat. Here, we present an improved integrated bio‐ and magnetostratigraphic chronological framework of the previously studied marine to continental transition in the southwest Tarim Basin along the Pamir and West Kunlun Shan, allowing us to better constrain its timing, cause and palaeoenvironmental impact. The sea retreat is assigned a latest Lutetian–earliest Bartonian age (ca. 41 Ma; correlation of the last marine sediments to calcareous nannofossil Zone CP14 and correlation of the first continental red beds to the base of magnetochron C18r). Higher up in the continental deposits, a major hiatus includes the Eocene–Oligocene transition (ca. 34 Ma). This suggests the Tarim Basin was hydrologically connected to the Tethyan marine Realm until at least the earliest Oligocene and had not yet been closed by uplift of the Pamir–Kunlun orogenic system. The westward sea retreat at ca. 41 Ma and the disconformity at the Eocene–Oligocene transition are both time‐equivalent with reported Asian aridification steps, suggesting that, consistent with climate modelling results, the sea acted as an important moisture source for the Asian continental interior. 相似文献
Observations were made of a shallow stratus of upslope origin using an aircraft equipped with insitu probes and with a vertically-pointing radar of 3-mm wavelength. A cloud layer of 300 m thickness was found below the inversion; an additional layer of 100 m thickness was located within the inversion. The coldest temperature within the cloud was -2°C and the cloud contained no ice particles. Drizzle drops up to 180 Am were present in both cloud layers.The observations reveal precipitation and air motion structures of approximately 1 km horizontal dimensions. The origin of this organization appears to be weak convection. In addition, mixing played an important role in forming the cloud droplet and drizzle drop size distributions. 相似文献
Abstract Values of incoming solar and long‐wave radiation measured at the vessel Quadra during the three phases of GATE are used to assess the daily performance of three models, one for solar and two for long‐wave radiation. The solar radiation model, which uses data on precipitable water and cloud amount at three levels in the atmosphere performed satisfactorily during the first phase but gave poor results in the other two phases when cumulonimbus became more dominant. Both the flux‐emissivity approach using measured and interpolated Upper air data and Paltridge's empirical procedure produced estimates of long‐wave radiation which compared very closely with the measurements. 相似文献
Waste-to-energy technologies are considered as one of the key waste treatment technologies due to their energy and heat recovery efficiencies from the waste. A number of research studies were accomplished to understand the potential environmental burdens from emerging waste treatment technologies such as pyrolysis–gasification (PG). The aim of this study was to examine the PG of municipal solid waste (MSW) treatment process through a life cycle assessment (LCA) method. The study also includes a comparative LCA model of PG and incineration to identify the potential environmental burdens from the existing (incineration) and emerging (PG) waste treatment technologies. This study focused on ten environmental impact categories under two different scenarios, namely: (a) LCA model of PG and (b) comparative LCA model of PG and incineration. The scenario (a) showed that PG had significant environmental burdens in the aquatic eco-toxicity and the global warming potential impact categories. The comparative scenario (b) of PG and incineration of MSW showed that PG had comparatively lower potential environmental burdens in acidification, eutrophication, and aquatic eco-toxicity. Both LCA models showed that the environmental burdens were mainly caused by the volume of the thermal gas (emissions) produced from these two technologies and the final residue to disposal. Therefore, the results indicate that the efficiency and environmental burdens of the emerging technologies are dependent on the emissions and the production of final residue to the landfill. 相似文献