首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   87篇
  免费   13篇
  国内免费   1篇
测绘学   3篇
大气科学   13篇
地球物理   21篇
地质学   47篇
海洋学   6篇
天文学   7篇
自然地理   4篇
  2024年   2篇
  2022年   2篇
  2021年   4篇
  2020年   6篇
  2019年   9篇
  2018年   6篇
  2017年   6篇
  2016年   6篇
  2015年   2篇
  2014年   2篇
  2013年   5篇
  2012年   5篇
  2011年   4篇
  2010年   5篇
  2009年   7篇
  2008年   4篇
  2007年   6篇
  2006年   3篇
  2005年   3篇
  2004年   2篇
  2003年   2篇
  2002年   2篇
  2001年   1篇
  1995年   1篇
  1992年   1篇
  1991年   1篇
  1990年   1篇
  1970年   2篇
  1956年   1篇
排序方式: 共有101条查询结果,搜索用时 718 毫秒
21.
Clar  Christoph  Löschner  Lukas  Nordbeck  Ralf  Fischer  Tatjana  Thaler  Thomas 《Natural Hazards》2021,105(2):1765-1796
Natural Hazards - This contribution explores the conceptual and empirical linkages between population dynamics and natural hazard risk management (NHRM). Following a review of the international...  相似文献   
22.
Climate change and high magnitude mass wasting events pose adverse societal effects and hazards, especially in alpine regions. Quantification of such geomorphic processes and their rates is therefore critical but is often hampered by the lack of appropriate techniques and the various spatiotemporal scales involved in these studies. Here we exploit both in situ cosmogenic beryllium-10 (10Be) and carbon-14 (14C) nuclide concentrations for deducing exposure ages and tracing of sediment through small alpine debris flow catchments in central Switzerland. The sediment cascade and modern processes we track from the source areas, through debris flow torrents to their final export out into sink regions with cosmogenic nuclides over an unprecedented five-year time series with seasonal resolution. Data from a seismic survey and a 90 m core revealed a glacially overdeepened basin, filled with glacial and paraglacial sediments. Surface exposure dating of fan boulders and radiocarbon ages constrain the valley fill from the last deglaciation until the Holocene and show that most of the fan existed in early Holocene times already. Current fan processes are controlled by episodic debris flow activity, snow (firn) and rock avalanches. Field investigations, digital elevation models (DEMs) of difference and geomorphic analysis agree with sediment fingerprinting with cosmogenic nuclides, highlighting that the bulk of material exported today at the outlet of the subcatchments derives from the lower fans. Cosmogenic nuclide concentrations steadily decrease from headwater sources to distal fan channels due to the incorporation of material with lower nuclide concentrations. Further downstream the admixture of sediment from catchments with less frequent debris flow activity can dilute the cosmogenic nuclide signals from debris flow dominated catchments but may also reach thresholds where buffering is limited. Consequently, careful assessment of boundary conditions and driving forces is required when apparent denudation rates derived from cosmogenic nuclide analysis are upscaled to larger regions. © 2018 John Wiley & Sons, Ltd.  相似文献   
23.
Understanding the interactions of vegetation and soil water under varying hydrological conditions is crucial to aid quantitative assessment of land-use sustainability for maintaining water supply for humans and plants. Isolating and estimating the volume and ages of water stored within different compartments of the critical zone, and the associated fluxes of evaporation, transpiration, and groundwater recharge, facilitates quantification of these soil–plant-water interactions and the response of ecohydrological fluxes to wet and dry periods. We used the tracer-aided ecohydrological model EcH2O-iso to examine the response of water ages of soil water storage, groundwater recharge, evaporation, and root-uptake at a mixed land use site, in northeastern Germany during the drought of 2018 and in the following winter months. The approach applied uses a dynamic vegetation routine which constrains water use by ecological mechanisms. Two sites with regionally typical land-use types were investigated: a forested site with sandy soils and a deep rooting zone and a grassland site, with loamier soils and shallower rooting zone. This results in much younger water ages (<1 year) through the soil profile in the forest compared to the grass, coupled with younger groundwater recharge. The higher water use in the forest resulted in a more pronounced annual cycle of water ages compared to the more consistent water age in the loamier soil of the grasslands. The deeper rooting zone of the forested site also resulted in older root-uptake water usage relative to soil evaporation, while the grassland site root-uptake was similar to that of soil evaporation. Besides more dynamic water ages in the forest, replenishment of younger soil waters to soil storage was within 6 months following the drought (cf. >8 months in the grassland). The temporal evaluation of the responsiveness of soil and vegetation interactions in hydrologic extremes such as 2018 is essential to understand changes in hydrological processes and the resilience of the landscape to the longer and more severe summer droughts predicted under future climate change.  相似文献   
24.
Mathematical Geosciences - We present an application of deep generative models in the context of partial differential equation constrained inverse problems. We combine a generative adversarial...  相似文献   
25.
Linking the timing of glacial episodes and behaviour to climatic shifts that are documented in ice and marine sedimentary archives is key to understanding ocean-land interactions. In the NW Scottish Highlands a large number of closely spaced (‘hummocky’) moraines formed at retreating glacier margins. Independent age control on one palaeo-glacier limit is consistent with the timing of Younger Dryas (YD) glaciation in the area, but adjacent glacier lobes have remained undated due to the lack of sites and material for 14C dating. Direct dating of ice-marginal moraines using optically stimulated luminescence (OSL) techniques has never been attempted before in Scotland, but if successful, they may be the most appropriate methods for constraining the age of sediment deposition in the absence of organic material. Coarse-grained quartz and K-feldspar minerals from supraglacial sheet flow deposits and glacilacustrine sediments within ice-marginal moraines were analysed using the single-aliquot regenerative-dose (SAR) protocol. Independent age control and clear geomorphological relationships indicate that all samples should yield YD or post-Last Glacial Maximum (LGM) ages. Quartz OSL shine down curves showed low luminescence sensitivity, significant medium-to-slow components, a weak fast component, and scattered SAR data; Linearly Modulated-OSL (LM-OSL) measurements confirmed that the fast component was weak or absent. In contrast, feldspar infrared stimulated luminescence (IRSL) was highly sensitive with excellent SAR data. However, SAR data from 3 mm diameter aliquots of feldspar (200 grains) give higher than expected equivalent doses (De) by an order of magnitude. SAR measurements of small clusters of feldspar grains (ranging from 1–8) considerably broaden the apparent De distribution, but even the lowest value is about 2–3 times the expected De. Two possibilities arise to explain the quartz and feldspar data: (1) that glacial sequences in the NW Highlands re-work inherited (older) glacial deposits and that some of the pre-Devensian existing glacial landforms have only been modified during Devensian glaciation; or (2) that the sedimentary processes operating in these ice-marginal environments are not conducive to adequate bleaching of quartz and feldspar grains. Our study implies that ice-proximal supraglacial sediments from this region in NW Scotland reflect older ages of deposition, but dating YD sediments has not been possible.  相似文献   
26.
The mafic–ultramafic Fariman complex in northeastern Iran has been interpreted as a Paleo-Tethyan ophiolitic fragment with subduction- and plume-related characteristics as well as a basin deposit on an active continental margin. Contributing to this issue, we present geochemical, geochronological, and mineralogical data for transitional and tholeiitic basalts. Thermodynamic modeling suggests picritic parental magmas with 16–21 wt% MgO formed at plume-like mantle potential temperatures of ca. 1460–1600 °C. Rare pyroxene spinifex textures and skeletal to feather-like clinopyroxene attest to crystallization from undercooled magma and high cooling rates. Chromium numbers and TiO2 concentrations in spinel are similar to those in intraplate basalts. 40Ar–39Ar dating of magmatic hornblende yielded a plateau age of 276?±?4 Ma (2σ). Transitional basalt with OIB-like trace element characteristics is the predominant rock-type; less frequent are tholeiitic basalts with mildly LREE depleted patterns and picrites with intermediate trace element characteristics. All samples show MORB-OIB like Pb/Ce, Th/La, and Th/Nb ratios which preclude subduction-modified mantle sources and felsic crustal material. Tholeiitic basalts and related olivine cumulate rocks show MORB-like initial εNd values of +?9.4 to +?6.2 which define a mixing line with the data for the transitional basalts (εNd ca. +?2.6). Initial 187Os/188Os ratios of 0.124–0.293 support mixed sources with a high proportion of recycled mafic crust in the transitional basalts. High concentrations of highly siderophile elements are in agreement with the high mantle potential temperatures and inferred high-melting degrees. It is argued that the Fariman complex originated by melting of a mantle plume component as represented by the OIB-like transitional basalt and entrained asthenosphere predominant in the MORB-like tholeiites. Two lines of evidence such as association of the Fariman complex with pelagic to neritic sedimentary rocks and the tectonic position at the boundary of two continental blocks defined by ophiolites and accretionary complexes of different ages suggest formation in an oceanic domain. Thus, we interpret it as a fragment of an oceanic plateau, which escaped subduction and was accreted as exotic block in the Paleo-Tethyan suture zone.  相似文献   
27.
The Demnitzer Millcreek catchment (DMC), is a 66 km2 long-term experimental catchment located 50 km SE of Berlin. Monitoring over the past 30 years has focused on hydrological and biogeochemical changes associated with de-intensification of farming and riparian restoration in the low-lying landscape dominated by rain-fed farming and forestry. However, the hydrological function of the catchment, which is closely linked to nutrient fluxes and highly sensitive to climatic variability, is still poorly understood. In the last 3 years, a prolonged drought period with below-average rainfall and above-average temperatures has resulted in marked hydrological change. This caused low soil moisture storage in the growing season, agricultural yield losses, reduced groundwater recharge, and intermittent streamflows in parts of an increasingly disconnected channel network. This paper focuses on a two-year long isotope study that sought to understand how different parts of the catchment affect ecohydrological partitioning, hydrological connectivity and streamflow generation during drought conditions. The work has shown the critical importance of groundwater storage in sustaining flows, basic in-stream ecosystem services and the dominant influence of vegetation on groundwater recharge. Recharge was much lower and occurred during a shorter window of time in winter under forests compared to grasslands. Conversely, groundwater recharge was locally enhanced by the restoration of riparian wetlands and storage-dependent water losses from the stream to the subsurface. The isotopic variability displayed complex emerging spatio-temporal patterns of stream connectivity and flow duration during droughts that may have implications for in-stream solute transport and future ecohydrological interactions between landscapes and riverscapes. Given climate projections for drier and warmer summers, reduced and increasingly intermittent streamflows are very likely not just in the study region, but in similar lowland areas across Europe. An integrated land and water management strategy will be essential to sustaining catchment ecosystem services in such catchment systems in future.  相似文献   
28.
Boundary-Layer Meteorology - We present a comprehensive analysis of four south föhn events observed during the Penetration and Interruption of Alpine Foehn (PIANO) field campaign in the Inn...  相似文献   
29.
Powerful computers and dedicated software allow effective data mining and scientific analyses in astronomical plate archives. We give and discuss examples of newly developed algorithms for astronomical plate analyses, e.g., searches for optical transients, as well as for major spectral and brightness changes.  相似文献   
30.
The Trigonodus Dolomit is the dolomitized portion of the homoclinal ramp sediments of the Middle Triassic Upper Muschelkalk in the south‐east Central European Basin. Various dolomitizing mechanisms, followed by recrystallization, have been previously invoked to explain the low δ18O, high 87Sr/86Sr, extensive spatial distribution and early nature of the replacive matrix dolomites. This study re‐evaluates the origin, timing and characteristics of the dolomitizing fluids by examining petrographic and isotopic trends in the Trigonodus Dolomit at 11 boreholes in northern Switzerland. In each borehole the ca 30 m thick unit displays the same vertical trends with increasing depth: crystal size increase, change from anhedral to euhedral textures, ultraviolet‐fluorescence decrease, δ18OVPDB decrease from ?1·0‰ at the top to ?6·7‰ at the base and an 87Sr/86Sr increase from 0·7080 at the top to 0·7117 at the base. Thus, dolomites at the top of the unit record isotopic values similar to Middle Triassic seawater (δ18OVSMOW = 0‰; 87Sr/86Sr = 0·70775) while dolomites at the base record values similar to meteoric groundwaters from the nearby Vindelician High (δ18OVSMOW = ?4·0‰; 87Sr/86Sr = >0·712). According to water–rock interaction modelling, a single dolomitizing or recrystallizing fluid cannot have produced the observed isotopic trends. Instead, the combined isotopic, geochemical and petrographic data can be explained by dolomitization via seepage‐reflux of hypersaline brines into dense, horizontally‐advecting groundwaters that already had negative δ18O and high 87Sr/86Sr values. Evidence for the early groundwaters is found in meteoric calcite cements that preceded dolomitization and in fully recrystallized dolomites with isotopic characteristics identical to the groundwaters following matrix dolomitization. This study demonstrates that early groundwaters can play a decisive role in the formation and recrystallization of massive dolomites and that the isotopic and textural signatures of pre‐existing groundwaters can be preserved during seepage‐reflux dolomitization in low‐angle carbonate ramps.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号