首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   256篇
  免费   8篇
  国内免费   3篇
测绘学   6篇
大气科学   16篇
地球物理   75篇
地质学   64篇
海洋学   32篇
天文学   61篇
综合类   1篇
自然地理   12篇
  2023年   1篇
  2021年   5篇
  2020年   5篇
  2019年   8篇
  2018年   7篇
  2017年   8篇
  2016年   12篇
  2015年   8篇
  2014年   9篇
  2013年   18篇
  2012年   15篇
  2011年   14篇
  2010年   24篇
  2009年   15篇
  2008年   8篇
  2007年   14篇
  2006年   6篇
  2005年   9篇
  2004年   6篇
  2003年   8篇
  2002年   7篇
  2001年   7篇
  2000年   6篇
  1999年   1篇
  1998年   3篇
  1997年   3篇
  1996年   3篇
  1994年   2篇
  1992年   2篇
  1991年   2篇
  1990年   1篇
  1989年   2篇
  1987年   2篇
  1986年   1篇
  1985年   2篇
  1983年   2篇
  1982年   2篇
  1981年   2篇
  1979年   2篇
  1978年   3篇
  1977年   3篇
  1976年   2篇
  1975年   1篇
  1974年   2篇
  1972年   2篇
  1969年   1篇
  1968年   1篇
排序方式: 共有267条查询结果,搜索用时 31 毫秒
91.
Single station seismic noise measurements were carried out at 192 sites in the western part of Istanbul, Turkey. This extensive survey allowed the fundamental resonance frequency of the sedimentary cover to be mapped, and identify areas prone to site amplification. The results are in good agreement with the geological distribution of sedimentary units, indicating a progressive decrease of the fundamental resonance frequencies from the northeastern part, where the bedrock outcrops, towards the southwestern side, where a thickness of some hundreds meters for the sedimentary cover is estimated. The particular distribution of fundamental resonance frequencies indicates that local amplification of the ground motion might play a significative role in explaining the anomalous damage distribution after the 17 August 1999 Kocaeli Earthquake.  相似文献   
92.
Probabilistically controlled design values of the nonlinear seismic response of reinforced concrete frames are obtained using a method previously proposed by the authors. The method allows to calculate conservative design values characterized by a predefined non‐exceedance probability, using a limited number of spectrum‐fitting generated accelerograms. Herein the method is applied to elastic‐strain hardening single degree of freedom systems representative of RC framed structures and is then assessed with reference to four reinforced concrete model frames designed according to EC8. The frames are characterized by different natural periods and aspect ratios. The results, compared with those obtained applying current EC8 recommendations, show the effectiveness of the proposed method. EC8 provides for design values of the seismic response of a structure with a nonlinear behavior computed as the mean value of the responses to seven accelerograms or as the maximum value of the responses to three accelerograms. These two criteria lead to design values characterized by very different and uncontrolled non‐exceedance probability levels, while the proposed method allows the analyst to directly control the non‐exceedance probability level of the calculated design values. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   
93.
94.
Natural threats like earthquakes, hurricanes or tsunamis have had serious impacts on communities. In the past, major earthquakes in the United States like Loma Prieta 1989, Northridge 1994, or recent events in Italy like L’Aquila 2009 or Emilia 2012 emphasized the importance of preparedness and awareness to reduce social impacts. In addition to that, earthquake damaged businesses dramatically reduced the gross regional product. Generating scenario earthquakes in a proper way is important to suitably assess the risk in bridge networks and social losses in terms of gross regional product reduction. Seismic hazard is traditionally assessed by means of probabilistic seismic hazard analysis (PSHA). Although PSHA well represents the hazard at a specific location it is not suitable for spatially distributed systems. Scenario earthquakes can overcome this problem; they represent the actual distribution of ground shaking for a spatially distributed system while being hazard consistent. In this work a methodology to generate scenario earthquakes has been proposed using a novel approach with the aim of being the basic step for investigating possible earthquake consequences in seismic areas and contributing to reduce losses.  相似文献   
95.
Finite volumes of magma moving in confinement, store hydraulic potential energy for the generation,control and transmission of power. The Pascal's principle in a hydraulic jack arrangement is used to model the vertical and lateral growth of sills. The small input piston of the hydraulic jack is equivalent to the feeder dike, the upper large expansible piston equivalent to the magmatic chamber and the inertial force of the magma in the dike is the input force. This arrangement is particularly relevant to the case of sills expanding with blunt tips, for which rapid fracture propagation is inhibited. Hydraulic models concur with experimental data that show that lateral expansion of magma into a sill is promoted when the vertical ascent of magma through a feeder dike reaches the bottom contact with an overlying, flat rigid-layer. At this point, the magma is forced to decelerate, triggering a pressure wave through the conduit caused by the continued ascent of magma further down(fluid-hammer effect). This pressure wave can provide overpressure enough to trigger the initial hydraulic lateral expansion of magma into an incipient sill, and still have enough input inertial force left to continue feeding the hydraulic system. The lateral expansion underneath the strong impeding layer, causes an area increase and thus, further hydraulic amplification of the input inertial force on the sides and roof of the incipient sill, triggering further expansion in a self-reinforcing process. Initially, the lateral pressure increase is larger than that in the roof allowing the sill to expand. However, expansion eventually increases the total integrated force on the roof allowing its uplift into either a laccolith, if the roof preserves continuity, or into a piston bounded by a circular set of fractures. Hydraulic models for shallow magmatic chambers, also suggest that laccolith-like intrusions require the existence of a self-supported chamber roof. In contrast, if the roof of magmatic chambers loses the self-supporting capacity, lopoliths and calderas should be expected for more or less dense magmas, respectively, owing to the growing influence of the density contrast between the host rock and the magma.  相似文献   
96.
97.
98.
This paper deals with the period evaluation of Reinforced Concrete (RC) framed buildings in elastic, yield and severely damaged states. Firstly, period-height relationships either reported in the literature, or obtained from both numerical simulations (eigenvalue analyses) and experimental measurements (ambient vibration analyses) have been examined and compared. Structural types representing low-rise, mid-rise and high-rise RC buildings without earthquake resistant design, widely present in the Italian and European built environment, have been studied. Results have shown high differences between numerical and experimental period values. Period elongation (stiffness degradation) during and after strong ground shaking has been also examined based on results from experimental in situ and laboratory tests performed on some RC framed building structures which suffered moderate-heavy damage. Some comments on the relationship between damage level and period elongation are reported.  相似文献   
99.
Evolution and depositional environments of the Eberswalde fan delta, Mars   总被引:2,自引:0,他引:2  
The Eberswalde crater and its contributing basins have been analyzed in detail in order to reconstruct the geological evolution of the water-related landforms with particular focus on the Eberswalde delta-like feature. Based on a complex strata organization characterized by a topset-foreset-bottomset geometry, typical of delta progradation on Earth, we interpret the Eberswalde feature to be a fan delta associated with a lacustrine system. Depositional sub-environments have been recognized and mapped and the sedimentary processes discussed. A sequence stratigraphy approach has been used to evaluate the system, which we interpret to result from three depositional sequences. These sequences suggest relative water level fluctuations and a longer trend over time towards decreasing water content inside the basin.  相似文献   
100.
Average steady source flow in heterogeneous porous formations is modelled by regarding the hydraulic conductivity K(x) as a stationary random space function (RSF). As a consequence, the flow variables become RSFs as well, and we are interested into calculating their moments. This problem has been intensively studied in the case of a Neumann type boundary condition at the source. However, there are many applications (such as well-type flows) for which the required boundary condition is that of Dirichlet. In order to fulfill such a requirement the strength of the source must be proportional to K(x), and therefore the source itself results a RSF. To solve flows driven by sources whose strength is spatially variable, we have used a perturbation procedure similar to that developed by Indelman and Abramovich (Water Resour Res 30:3385–3393, 1994) to analyze flows generated by sources of deterministic strength. Due to the linearity of the mathematical problem, we have focused on the explicit derivation of the mean head distribution G d (x) generated by a unit pulse. Such a distribution represents the fundamental solution to the average flow equations, and it is termed as mean Green function. The function G d (x) is derived here at the second order of approximation in the variance σ2 of the fluctuation (where K A is the mean value of K(x)), for arbitrary correlation function ρ(x), and any dimensionality d of the flow domain. We represent G d (x) as product between the homogeneous Green function G d (0)(x) valid in a domain with constant K A , and a distortion term Ψ d (x) = 1 + σ2ψ d (x) which modifies G d (0)(x) to account for the medium heterogeneity. In the case of isotropic formations ψ d (x) is expressed via one quadrature. This quadrature can be analytically calculated after adopting specific (e.g.. exponential and Gaussian) shape for ρ(x). These general results are subsequently used to investigate flow toward a partially-penetrating well in a semi-infinite domain. Indeed, we construct a σ2-order approximation to the mean as well as variance of the head by replacing the well with a singular segment. It is shown how the well-length combined with the medium heterogeneity affects the head distribution. We have introduced the concept of equivalent conductivity K eq(r,z). The main result is the relationship where the characteristic function ψ(w)(r,z) adjusts the homogeneous conductivity K A to account for the impact of the heterogeneity. In this way, a procedure can be developed to identify the aquifer hydraulic properties by means of field-scale head measurements. Finally, in the case of a fully penetrating well we have expressed the equivalent conductivity in analytical form, and we have shown that (being the effective conductivity for mean uniform flow), in agreement with the numerical simulations of Firmani et al. (Water Resour Res 42:W03422, 2006).  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号