首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   256篇
  免费   8篇
  国内免费   3篇
测绘学   6篇
大气科学   16篇
地球物理   75篇
地质学   64篇
海洋学   32篇
天文学   61篇
综合类   1篇
自然地理   12篇
  2023年   1篇
  2021年   5篇
  2020年   5篇
  2019年   8篇
  2018年   7篇
  2017年   8篇
  2016年   12篇
  2015年   8篇
  2014年   9篇
  2013年   18篇
  2012年   15篇
  2011年   14篇
  2010年   24篇
  2009年   15篇
  2008年   8篇
  2007年   14篇
  2006年   6篇
  2005年   9篇
  2004年   6篇
  2003年   8篇
  2002年   7篇
  2001年   7篇
  2000年   6篇
  1999年   1篇
  1998年   3篇
  1997年   3篇
  1996年   3篇
  1994年   2篇
  1992年   2篇
  1991年   2篇
  1990年   1篇
  1989年   2篇
  1987年   2篇
  1986年   1篇
  1985年   2篇
  1983年   2篇
  1982年   2篇
  1981年   2篇
  1979年   2篇
  1978年   3篇
  1977年   3篇
  1976年   2篇
  1975年   1篇
  1974年   2篇
  1972年   2篇
  1969年   1篇
  1968年   1篇
排序方式: 共有267条查询结果,搜索用时 265 毫秒
21.
This work presents a geomorphometric approach for outlining anomalies of the topographic surface that may be related to geological structures or to geomorphological phenomena. It is based on 2D discrete wavelet transform of digital elevation models. This transform is used to extract singularities of a series of data. This is specifically applied to a digital elevation model, in order to get its detail coefficients and to have evidence about their variations and values. In particular, this approach can be helpful for the delineation and identification of landforms singularities, like landslides and geological structures. The potential and effectiveness of this approach is shown by an application to a case study about a large deep-seated landslide, located at the central-south front of the Apennine in South Italy.  相似文献   
22.
Abstract— We propose the Sirente crater field to be the first discovered impact craters in Italy. They are located in the Sirente plain within the mountains of the Abruzzo region, central Italy. The craters are distributed in a field 450 m long and 400 m wide. This field consists of ?17 smaller craters close to a larger main crater. The main crater is located in the southern end of the crater field and is 140 m long and 115 m wide, measured rim‐to‐rim. It has a well‐developed, saddle‐shaped rim that rises at a maximum 2.2 m above the surrounding plain. Radiocarbon dating of the target surface preserved below the rim gave a calibrated age of formation at about a.d. 412 (1650 ± 40 radiocarbon years b.p.). This young age is consistent with the apparent little modification of the rim. The morphology of the main crater and its relation to a crater field strongly points to its origin by impact from a projectile that broke up during its passage through the atmosphere. Quartz is very rare in the target and no planar deformation features have been found so far. The rim material and the upper 4 m of the main crater infill are impregnated with ferric oxides, which gives a more reddish colour compared to the other sediments of the plain. Rusty crusts with high Fe and Mn content occur in the rim material, but have not been found in the plain's sediments. Some of these crusts can be separated by magnet, and have sporadic micron‐sized Ni‐rich granules. The main crater is in the size range of the craters with explosive dispersion of the projectile and has many features comparable to both large experimental and meteoritic impact craters formed in loose sediments. We suggest that this crater represents a rare example of well‐preserved, small impact crater formed in unconsolidated target materials.  相似文献   
23.
Abstract

The Ninth Conference of the Parties (COP-9) decided to adopt an accounting system based on expiring carbon credits to address the problem of non-permanent carbon storage in forests established under the Clean Development Mechanism (CDM). This article reviews and discusses carbon accounting methods that were under consideration before COP-9 and presents a model which calculates the minimum area that forest plantation projects should reach to be able to compensate CDM transaction costs with the revenues from carbon credits. The model compares different accounting methods under various sets of parameters on project management, transaction costs, and carbon prices. Model results show that under current carbon price and average transaction costs, projects with an area of less than 500 ha are excluded from the CDM, whatever accounting method is used. Temporary crediting appears to be the most favorable approach to account for non-permanent carbon removal in forests and also for the feasibility of smaller projects. However, lower prices for credits with finite lifetimes may prevent the establishment of CDM forestry projects. Also, plantation projects with low risk of unexpected carbon loss and sufficient capacity for insuring or buffering the risk of carbon re-emission would benefit from equivalence-adjusted average carbon storage accounting rather than from temporary crediting.  相似文献   
24.
25.
26.
 Due to the lack of an effective policy of planning and prevention, over the past decades the area around Mt. Vesuvio has undergone a steady increase in population and uncontrolled housing development. Consequently, it has become one of the most hazardous volcanic areas in the world. In order to mitigate the damage that the impact of an explosive event would cause in the area, the Department of Civil Defense has worked out an Emergency Management Plan using the A.D. 1631 subplinian eruption as the most probable short-term event. However, from 25 000 years B.P. to present, the activity of the Somma-Vesuvio volcano has shown a sequence of eight eruptive cycles, which always began with a strong plinian eruption. In this paper we utilize the A.D. 79 eruption as an example of a potential large explosive eruption that might occur again at Vesuvio. A detailed tephrostratigraphic analysis of the eruption products was processed by a multivariate statistical analysis. This analysis proved useful for identifying marker layers in the sequences, thus allowing the recognition of some major phases of synchronous deposition and hence the definition of the chronological and spatial evolution of the eruption. By combining this reconstruction with land-use maps, a scenario is proposed with time intervals in the eruptive sequence similar to those reported in Pliny's letter. Thus, it was calculated that, after 7 h from the start of the eruption, a total area of approximately 300 km2 would be covered with the eruption products. In the following 11 h, a total area of approximately 500 km2 would be involved. The third and last phase of deposition would not cause significant variation in the total area involved, but it would bring about an increase in the thickness of the pyroclastic deposits in the perivolcanic area. Received: 30 November 1996 / Accepted: 29 May 1997  相似文献   
27.
We examine the problem of a shock wave propagating in a gravitational field in the presence of pressure and density gradients by attacking the non-linear equations of fluid flow. Our approach is analytical rather than numerical, and we analyze the characteristic equations of a fluid in the presence of gravity with radiative dissipation. Because the radiation field enters the fluid equations in the form of an integral, radiative dissipation may be considered an inhomogeneity which does not affect the characteristic directions. The fluid equations remain hyperbolic and thus are amenable to solution by the standard techniques of gas analysis.We give an equation of path for a shock wave and we enumerate the physical conditions which lead to stability or instability. We find that shock waves are generally unstable in most stellar atmospheres unless they are very weak. The form of the instability is that of a spicule deformation similar to that observed in the upper solar chromosphere.This work was carried out at the Smithsonian-Harvard Astrophysical Observatory and was presented in a thesis to Brandeis University, May 1963.  相似文献   
28.
29.
We conduct high-resolution collisionless N -body simulations to investigate the tidal evolution of dwarf galaxies on an eccentric orbit in the Milky Way (MW) potential. The dwarfs originally consist of a low surface brightness stellar disc embedded in a cosmologically motivated dark matter halo. During 10 Gyr of dynamical evolution and after five pericentre passages, the dwarfs suffer substantial mass loss and their stellar component undergoes a major morphological transformation from a disc to a bar and finally to a spheroid. The bar is preserved for most of the time as the angular momentum is transferred outside the galaxy. A dwarf spheroidal (dSph) galaxy is formed via gradual shortening of the bar. This work thus provides a comprehensive quantitative explanation of a potentially crucial morphological transformation mechanism for dwarf galaxies that operates in groups as well as in clusters. We compare three cases with different initial inclinations of the disc and find that the evolution is fastest when the disc is coplanar with the orbit. Despite the strong tidal perturbations and mass loss, the dwarfs remain dark matter dominated. For most of the time, the one-dimensional stellar velocity dispersion, σ, follows the maximum circular velocity, V max, and they are both good tracers of the bound mass. Specifically, we find that   M bound∝ V 3.5max  and     in agreement with earlier studies based on pure dark matter simulations. The latter relation is based on directly measuring the stellar kinematics of the simulated dwarf, and may thus be reliably used to map the observed stellar velocity dispersions of dSphs to halo circular velocities when addressing the missing satellites problem.  相似文献   
30.
Observations of turbulent velocity dispersions in the H  i component of galactic discs show a characteristic floor in galaxies with low star formation rates and within individual galaxies the dispersion profiles decline with radius. We carry out several high-resolution adaptive mesh simulations of gaseous discs embedded within dark matter haloes to explore the roles of cooling, star formation, feedback, shearing motions and baryon fraction in driving turbulent motions. In all simulations the disc slowly cools until gravitational and thermal instabilities give rise to a multiphase medium in which a large population of dense self-gravitating cold clouds are embedded within a warm gaseous phase that forms through shock heating. The diffuse gas is highly turbulent and is an outcome of large-scale driving of global non-axisymmetric modes as well as cloud–cloud tidal interactions and merging. At low star formation rates these processes alone can explain the observed H  i velocity dispersion profiles and the characteristic value of  ∼10 km s−1  observed within a wide range of disc galaxies. Supernovae feedback creates a significant hot gaseous phase and is an important driver of turbulence in galaxies with a star formation rate per unit area  ≳10−3 M yr−1 kpc−2  .  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号