首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   17篇
  免费   0篇
测绘学   2篇
地球物理   7篇
地质学   7篇
天文学   1篇
  2017年   1篇
  2011年   2篇
  2010年   3篇
  2009年   5篇
  2008年   3篇
  2006年   1篇
  2003年   1篇
  2000年   1篇
排序方式: 共有17条查询结果,搜索用时 0 毫秒
11.
The objective of the COST296 Action MIERS (Mitigation of Ionospheric Effects on Radio Systems) is to develop an increased knowledge of the effects imposed by the ionosphere on practical radio systems, and for the development and implementation of techniques to mitigate the deleterious effects of the ionosphere on such systems (http://www.cost296.rl.ac.uk). The COST296 Community contributes to the international efforts of IHY with scientific and outreach activities as well. After the realization of a web site hosted by Istituto Nazionale di Geofisica e Vulcanologia (INGV), developed also to promote the ionospheric physics to the open public, the COST296 Community supported an initiative addressed to the pupils of the primary school of several European Countries: the realization of a school-calendar dedicated to the Sun and to the Sun-Earth connections.  相似文献   
12.
The influence of the morphological setting on the denudation of carbonate landscapes and the respective contributions of mechanical and chemical weathering processes are still debated. We have addressed these questions by measuring 36Cl concentrations in 40 samples from the Luberon mountain, SE France, to constrain the denudation of various landscape elements. We observe a clear contrast between the local denudation rates from the flat summit surface, clustered around 30 mm/ka, and the basin‐average denudation rates across the flanks, ranging from 100 to 200 mm/ka. This difference highlights the transient evolution of the range, whose topography is still adjusting to previous uplift events. Such a pattern also suggests that carbonate dissolution is not the only driver of denudation in this setting, which appears to be significantly controlled by slope‐dependent processes.  相似文献   
13.
Because the intensity and energy spectrum of the cosmic ray flux are affected by atmospheric depth and geomagnetic-field strength, cosmogenic nuclide production rates increase considerably with altitude and to a lesser degree with latitude. The scaling methods used to account for spatial variability in production rates assume that all cosmogenic nuclides have the same altitude dependence. In this study we evaluate whether the production rates of cosmogenic 36Cl, 3He and 21Ne change differently with altitude, which is plausible due to the different threshold energies of their production reactions. If so, nuclide-specific scaling factors would be required.Concentrations of the three cosmogenic nuclides were determined in mafic phenocrysts over an altitude transect between 1000 and 4300 m at Kilimanjaro volcano (3°S). Altitude dependence of relative production rates was assessed in two ways: by determination of concentration ratios and by calculation of apparent exposure age ratios for all nuclide pairs. The latter accounts for characteristics of 36Cl that the stable nuclides 3He and 21Ne do not possess (radioactive decay, high sensitivity to mineral composition and significant contributions from production reactions other than spallation). All ratios overlap within error over the entire transect, and altitudinal variation in relative production rates is not therefore evident. This suggests that nuclide-specific scaling factors are not required for the studied nuclides at this low-latitude location. However, because previous studies have documented anomalous altitude-dependent variations in 3He production at mid-latitude sites, the effect of latitude on cross-calibrations should be further evaluated.We determined cosmogenic 21Ne/3He concentration ratios of 0.1864 ± 0.0085 in pyroxenes and 0.377 ± 0.018 in olivines, agreeing with those reported in previous studies.Despite the absence of independently determined ages for the studied lava surfaces, the consistency in the dataset should enable progress to be made in the determination of the production rates of all three nuclides as soon as the production rate of one of the nuclides has been accurately defined.To our knowledge this is the first time that 36Cl has been measured in pyroxene. The Cl extraction method was validated by measuring 36Cl in co-existing plagioclase phenocrysts in one of the samples.  相似文献   
14.
Ionospheric scintillations are caused by time- varying electron density irregularities in the ionosphere, occurring more often at equatorial and high latitudes. This paper focuses exclusively on experiments undertaken in Europe, at geographic latitudes between ~50°N and ~80°N, where a network of GPS receivers capable of monitoring Total Electron Content and ionospheric scintillation parameters was deployed. The widely used ionospheric scintillation indices S4 and sj{\sigma_{\varphi}} represent a practical measure of the intensity of amplitude and phase scintillation affecting GNSS receivers. However, they do not provide sufficient information regarding the actual tracking errors that degrade GNSS receiver performance. Suitable receiver tracking models, sensitive to ionospheric scintillation, allow the computation of the variance of the output error of the receiver PLL (Phase Locked Loop) and DLL (Delay Locked Loop), which expresses the quality of the range measurements used by the receiver to calculate user position. The ability of such models of incorporating phase and amplitude scintillation effects into the variance of these tracking errors underpins our proposed method of applying relative weights to measurements from different satellites. That gives the least squares stochastic model used for position computation a more realistic representation, vis-a-vis the otherwise ‘equal weights’ model. For pseudorange processing, relative weights were com- puted, so that a ‘scintillation-mitigated’ solution could be performed and compared to the (non-mitigated) ‘equal weights’ solution. An improvement between 17 and 38% in height accuracy was achieved when an epoch by epoch differential solution was computed over baselines ranging from 1 to 750 km. The method was then compared with alternative approaches that can be used to improve the least squares stochastic model such as weighting according to satellite elevation angle and by the inverse of the square of the standard deviation of the code/carrier divergence (sigma CCDiv). The influence of multipath effects on the proposed mitigation approach is also discussed. With the use of high rate scintillation data in addition to the scintillation indices a carrier phase based mitigated solution was also implemented and compared with the conventional solution. During a period of occurrence of high phase scintillation it was observed that problems related to ambiguity resolution can be reduced by the use of the proposed mitigated solution.  相似文献   
15.
16.
In-situ cosmogenic 36Cl production rates from spallation of Ca and K determined in several previously published calibration studies differ by up to 50%. In this study we compare whole rock 36Cl exposure ages with 36Cl exposure ages evaluated in Ca-rich plagioclase in the same 10 ± 3 ka lava sample taken from Mt. Etna (Sicily, 38° N). The exposure age of the sample was determined by K–Ar and corroborated by cosmogenic 3He measurements on cogenetic pyroxene phenocrysts. Sequential dissolution experiments showed that high Cl concentrations in plagioclase grains could be reduced from 450 ppm to less than 3 ppm after 16% dissolution. 36Cl exposure ages calculated from the successive dissolution steps of this leached plagioclase sample are in good agreement with K–Ar and 3He age. Stepwise dissolution of whole rock grains, on the other hand, is not as effective in reducing high Cl concentrations as it is for the plagioclase. 330 ppm Cl still remains after 85% dissolution. The 36Cl exposure ages derived are systematically about 30% higher than the ages calculated from the plagioclase. We could exclude contamination by atmospheric 36Cl as an explanation for this overestimate. Magmatic 36Cl was estimated by measuring a totally shielded sample, but was found to account for only an insignificant amount of 36Cl in the case of the 10 ka whole rock sample. We suspect that the overestimate of the whole rock exposure age is due to the difficulty in accurately assessing all the factors which control production of 36Cl by low-energy neutron capture on 35Cl, particularly variable water content and variable snow cover. We conclude that some of the published 36Cl spallation production rates might be overestimated due to high Cl concentrations in the calibration samples. The use of rigorously pretreated mineral separates reduces Cl concentrations, allowing better estimates of the spallation production rates.In the Appendix of this paper we document in detail the equations used. These equations are also incorporated into a 36Cl calculation spreadsheet made available in the supplementary data.  相似文献   
17.
Clastic mud beds rich in continental organic matter are observed recurrently in the Nile deep-sea turbidite system. They formed during flooding periods of the river similar to those that induce sapropel formation and occurred during periods of increased density stratification of the eastern Mediterranean. The very fine-grained flood deposits are intercalated within pelagic sediments, sapropels and Bouma-type turbidites. These flood deposits form by the successive reconcentrations of surface (hypopycnal) plumes by convective sedimentation, which in turn generate a fine-grained low-energy hyperpycnal flow. Sea-level high stands seem also to favor hypopycnal plume formation and increase clastic mud bed formation. Consequently, these muddy clastic beds provide a direct link between deep-marine sedimentary records and continental climatic change through flood frequency and magnitude.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号