首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   23397篇
  免费   247篇
  国内免费   137篇
测绘学   371篇
大气科学   1232篇
地球物理   4445篇
地质学   9238篇
海洋学   2282篇
天文学   5301篇
综合类   41篇
自然地理   871篇
  2022年   267篇
  2021年   435篇
  2020年   401篇
  2019年   468篇
  2018年   959篇
  2017年   871篇
  2016年   901篇
  2015年   376篇
  2014年   788篇
  2013年   1317篇
  2012年   926篇
  2011年   1108篇
  2010年   1075篇
  2009年   1229篇
  2008年   1058篇
  2007年   1227篇
  2006年   1081篇
  2005年   584篇
  2004年   545篇
  2003年   557篇
  2002年   569篇
  2001年   520篇
  2000年   416篇
  1999年   340篇
  1998年   329篇
  1997年   333篇
  1996年   260篇
  1995年   269篇
  1994年   239篇
  1993年   185篇
  1992年   215篇
  1991年   189篇
  1990年   202篇
  1989年   190篇
  1988年   161篇
  1987年   188篇
  1986年   174篇
  1985年   215篇
  1984年   204篇
  1983年   205篇
  1982年   195篇
  1981年   175篇
  1980年   167篇
  1979年   188篇
  1978年   165篇
  1977年   145篇
  1976年   137篇
  1975年   142篇
  1974年   127篇
  1973年   174篇
排序方式: 共有10000条查询结果,搜索用时 291 毫秒
751.
Woodlark Island (Muyuw) is located in a tectonically complex region, one of the few places on Earth where continental breakup is occurring ahead of seafloor spreading. Rifting commenced in the late Miocene (8.8–6 Ma) and is associated with the westward-propagating Woodlark Basin Spreading Centre. The island comprises approximately 850 km2 of raised Pleistocene coral reef and associated sediments with a central, moderately elevated range underlain by the middle Miocene calc-alkaline to shoshonitic Okiduse Volcanic Group (new name). It provides an exposure of upper Cenozoic geology in close proximity to the spreading centre. The Okiduse Volcanic Group is host to most of the island's historical gold and silver production and recently defined mineral resources totalling 1.75 Moz gold. This study uses facies analysis of pyroclastic deposits to develop a detailed geological map of the Okiduse Volcanic Group, with a revision and reinterpretation of the unit. Facies associations suggest that two major volcanic centres erupted synchronously during the middle Miocene (14–12 Ma), referred to as the Watou Mountain Eruptive Centre (new name) and the Uvarakoi Caldera (new name). The mafic–intermediate Watou Mountain Eruptive Centre formed during frequent small eruptions of widely varying style. Strombolian, subplinian, vulcanian and dome-related explosive eruptions occurred, alternating with extrusion of block and ash flow deposits and lava domes. Pyroclastic deposits were rapidly reworked from the steep cone, and were redeposited in a series of coalescing aprons surrounding the volcano. The felsic Uvarakoi Caldera formed during a series of violent explosive eruptions by rapid removal of magma from the underlying chamber, followed by collapse. Plinian and possibly phreatoplinian eruptions, as a result of magma–water mixing in the surface environment, resulted in widely dispersed, highly fragmented tuff deposits. The caldera was modified by widespread erosion following eruptions, resulting in fluvial, laharic and slope-wash deposits. This study highlights lithological controls (porosity and permeability) by various units within the Okiduse Volcanic Group on ore deposition.  相似文献   
752.
A unique type of Nb–Zr–REE–Ga-enriched alkali tonstein of pyroclastic origin occurs exclusively within the late Permian coal measures of southwest China. The alkali tonsteins are located within the lowest Xuanwei or Longtan formations of Wuchiapingian age, indicating that their age is later than the main episode of Emeishan Large Igneous Province (ELIP) magmatism. The alkali tonsteins have intermediate–felsic Al2O3/TiO2 values (12.6–34.2, mean 22.0), light rare earth element-enriched chondrite-normalised patterns, negative δEu and incompatible element ratios similar to those of ELIP alkaline Nb–Ta-enriched syenites. All available evidence shows that the alkali tonsteins from southwest China originated from coeval ELIP alkaline magmatism. The enrichment of Nb–Zr–REE–Ga in alkali tonsteins is derived from the ELIP alkaline Nb–Ta-enriched volcanic ashes and may represent the last stage of mineralisation associated with the Emeishan mantle plume activity.  相似文献   
753.
754.
755.
756.
757.
758.
A detailed study of long-term variability of winds using 30 years of data from the European Centre for Medium-range Weather Forecasts global reanalysis (ERA-Interim) over the Indian Ocean has been carried out by partitioning the Indian Ocean into six zones based on local wind extrema. The trend of mean annual wind speed averaged over each zone shows a significant increase in the equatorial region, the Southern Ocean, and the southern part of the trade winds. This indicates that the Southern Ocean winds and the southeast trade winds are becoming stronger. However, the trend for the Bay of Bengal is negative, which might be caused by a weakening of the monsoon winds and northeast trade winds. Maximum interannual variability occurs in the Arabian Sea due to monsoon activity; a minimum is observed in the subtropical region because of the divergence of winds. Wind speed variations in all zones are weakly correlated with the Dipole Mode Index (DMI). However, the equatorial Indian Ocean, the southern part of the trade winds, and subtropical zones show a relatively strong positive correlation with the Southern Oscillation Index (SOI), indicating that the SOI has a zonal influence on wind speed in the Indian Ocean. Monsoon winds have a decreasing trend in the northern Indian Ocean, indicating monsoon weakening, and an increasing trend in the equatorial region because of enhancement of the westerlies. The negative trend observed during the non-monsoon period could be a result of weakening of the northeast trade winds over the past few decades. The mean flux of kinetic energy of wind (FKEW) reaches a minimum of about 100?W?m?2 in the equatorial region and a maximum of about 1500?W?m?2 in the Southern Ocean. The seasonal variability of FKEW is large, about 1600?W?m?2, along the coast of Somalia in the northern Indian Ocean. The maximum monthly variability of the FKEW field averaged over each zone occurs during boreal summer. During the onset and withdrawal of monsoon, FKEW is as low as 50?W?m?2. The Southern Ocean has a large variation of about 1280?W?m?2 because of strong westerlies throughout the year.  相似文献   
759.
760.
The data are presented on total nitrogen dioxide (NO2) content in the atmosphere from 1979 to 2009 at the high-mountain scientific station located in the unpolluted area in the North Caucasus at the height of 2070 m above the sea level (43.7° N, 42.7° E). The total content of NO2 was measured on the basis of attenuation of direct solar radiation over slope pathways after the sunrise and before the sunset. Characteristics features are analyzed of temporal variability of total NO2 content in the atmosphere related to its diurnal and seasonal variations, 11-year solar activity, volcanic eruptions, quasi-biennial oscillations of tropical circulation, and the El Niño effect.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号